Solveeit Logo

Question

Question: If $A = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$, $A \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmat...

If A=[2132]A = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}, A[3253]=[1001]A \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, then the value of matrix

A

[1110]\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}

Answer

[1110]\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}

Explanation

Solution

Given MAN=IMAN=I with M=[2132]M=\begin{bmatrix}2&1\\3&2\end{bmatrix} and N=[3253]N=\begin{bmatrix}-3&2\\5&-3\end{bmatrix}, we compute A=M1N1A=M^{-1}N^{-1}. Finding M1M^{-1} and N1N^{-1} and then multiplying yields

A=[1110].A=\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}.