Solveeit Logo

Question

Question: The above reaction was studied at 300 K by monitoring the concentration of $\mathrm{FeSO}_{4}$ in wh...

The above reaction was studied at 300 K by monitoring the concentration of FeSO4\mathrm{FeSO}_{4} in which initial concentration was (10 M) and after half an hour became 8.8 M) The rate of production of Fe2(SO4)3\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} is _____ x 106 mol L1 s110^{-6} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}. (Nearest integer)

Answer

333

Explanation

Solution

  1. Change in concentration of FeSO4\mathrm{FeSO}_{4}: Δ[FeSO4]=8.8M10M=1.2M\Delta[\mathrm{FeSO}_{4}] = 8.8 \mathrm{M} - 10 \mathrm{M} = -1.2 \mathrm{M}.
  2. Time in seconds: t=30 minutes=1800 st = 30 \text{ minutes} = 1800 \text{ s}.
  3. Rate of disappearance of FeSO4\mathrm{FeSO}_{4}: Δ[FeSO4]Δt=1.2M1800s=1.21800M/s-\frac{\Delta[\mathrm{FeSO}_{4}]}{\Delta t} = -\frac{-1.2 \mathrm{M}}{1800 \mathrm{s}} = \frac{1.2}{1800} \mathrm{M/s}.
  4. Stoichiometric relation: 6 moles of FeSO4\mathrm{FeSO}_{4} produce 3 moles of Fe2(SO4)3\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}. Rate of production of Fe2(SO4)3\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} = 12×\frac{1}{2} \times Rate of disappearance of FeSO4\mathrm{FeSO}_{4}.
  5. Rate of production of Fe2(SO4)3\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}: Rate =12×1.21800M/s=1.23600M/s= \frac{1}{2} \times \frac{1.2}{1800} \mathrm{M/s} = \frac{1.2}{3600} \mathrm{M/s}.
  6. Convert to desired units: 1.23600M/s=1.23600×106×106 mol L1 s1=10003×106 mol L1 s1333.33×106 mol L1 s1\frac{1.2}{3600} \mathrm{M/s} = \frac{1.2}{3600} \times 10^6 \times 10^{-6} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1} = \frac{1000}{3} \times 10^{-6} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1} \approx 333.33 \times 10^{-6} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}.
  7. Nearest integer: 333.