Solveeit Logo

Question

Question: \[\mathop {\lim }\limits_{x \to - 1} \dfrac{{\sqrt \pi - \sqrt {\left( {{{\cos }^{ - 1}}x} \right)} ...

limx1π(cos1x)(x+1)\mathop {\lim }\limits_{x \to - 1} \dfrac{{\sqrt \pi - \sqrt {\left( {{{\cos }^{ - 1}}x} \right)} }}{{\sqrt {\left( {x + 1} \right)} }} , then the limit is equal to :
A. 1π\dfrac{1}{{\sqrt \pi }}
B. 12π\dfrac{1}{{\sqrt {2\pi } }}
C. 1
D. 0

Explanation

Solution

This problem deals with solving the limit with L’Hospital’s rule. The L’Hospital’s rule is applied to a limit when the limit is in indeterminate form. This is done by differentiating the numerator and the denominator and then limit is applied again, which is given by:
limxaf(x)g(x)=f(a)g(a)\Rightarrow \mathop {\lim }\limits_{x \to a} \dfrac{{f(x)}}{{g(x)}} = \dfrac{{f'(a)}}{{g'(a)}}
Also the value of cosine trigonometric at π\pi radians is equal to -1:
cosπ=1\Rightarrow \cos \pi = - 1
The derivative of cos1x{\cos ^{ - 1}}x is 11x2\dfrac{{ - 1}}{{\sqrt {1 - {x^2}} }}.

Complete step-by-step answer:
Using the L’Hospital’s rule to the given limit.
Consider the given limit, as given below:
limx1π(cos1x)(x+1)\Rightarrow \mathop {\lim }\limits_{x \to - 1} \dfrac{{\sqrt \pi - \sqrt {\left( {{{\cos }^{ - 1}}x} \right)} }}{{\sqrt {\left( {x + 1} \right)} }}
We know that the of cosπ\cos \pi , when is equal to 1 - 1, which is given below:
cosπ=1\Rightarrow \cos \pi = - 1
Now taking the inverse of cosine on both sides of the equation, as given below:
π=cos1(1)\Rightarrow \pi = {\cos ^{ - 1}}\left( { - 1} \right)
cos1(1)=π\therefore {\cos ^{ - 1}}\left( { - 1} \right) = \pi
That is when xx tends to -1 , then the value of the cosine inverse of xx is equal to π\pi , as shown:
limx1cos1x=π\Rightarrow \mathop {\lim }\limits_{x \to - 1} {\cos ^{ - 1}}x = \pi
Now consider the limit of the numerator when xx tends to -1 of the given limit limx1π(cos1x)(x+1)\mathop {\lim }\limits_{x \to - 1} \dfrac{{\sqrt \pi - \sqrt {\left( {{{\cos }^{ - 1}}x} \right)} }}{{\sqrt {\left( {x + 1} \right)} }}as shown:
limx1π(cos1x)\Rightarrow \mathop {\lim }\limits_{x \to - 1} \sqrt \pi - \sqrt {\left( {{{\cos }^{ - 1}}x} \right)}
π(cos1(1))\Rightarrow \sqrt \pi - \sqrt {\left( {{{\cos }^{ - 1}}\left( { - 1} \right)} \right)}
As we know that cos1(1)=π\because {\cos ^{ - 1}}\left( { - 1} \right) = \pi , hence substituting this value as shown:
ππ=0\Rightarrow \sqrt \pi - \sqrt \pi = 0
So the value of the numerator is zero, when put the value of x1x \to - 1.
Now consider the limit of the denominator of the given limit limx1π(cos1x)(x+1)\mathop {\lim }\limits_{x \to - 1} \dfrac{{\sqrt \pi - \sqrt {\left( {{{\cos }^{ - 1}}x} \right)} }}{{\sqrt {\left( {x + 1} \right)} }} as shown:
limx1(x+1)\Rightarrow \mathop {\lim }\limits_{x \to - 1} \sqrt {\left( {x + 1} \right)}
(1+1)=0\Rightarrow \sqrt {\left( { - 1 + 1} \right)} = 0
So the value of the denominator is zero, when put the value of x1x \to - 1.
Here the both the numerators and the denominator are zero when x1x \to - 1, hence applying the L’Hospital’s rule to the limit limx1π(cos1x)(x+1)\mathop {\lim }\limits_{x \to - 1} \dfrac{{\sqrt \pi - \sqrt {\left( {{{\cos }^{ - 1}}x} \right)} }}{{\sqrt {\left( {x + 1} \right)} }} as shown :
limx1ddx(π(cos1x))ddx((x+1))\Rightarrow \mathop {\lim }\limits_{x \to - 1} \dfrac{{\dfrac{d}{{dx}}\left( {\sqrt \pi - \sqrt {\left( {{{\cos }^{ - 1}}x} \right)} } \right)}}{{\dfrac{d}{{dx}}\left( {\sqrt {\left( {x + 1} \right)} } \right)}}
limx1(012(cos1x)ddx(cos1x))12(x+1)ddx(x+1)\Rightarrow \mathop {\lim }\limits_{x \to - 1} \dfrac{{\left( {0 - \dfrac{1}{{2\sqrt {\left( {{{\cos }^{ - 1}}x} \right)} }}\dfrac{d}{{dx}}\left( {{{\cos }^{ - 1}}x} \right)} \right)}}{{\dfrac{1}{{2\sqrt {\left( {x + 1} \right)} }}\dfrac{d}{{dx}}\left( {x + 1} \right)}}
We know that the derivative of cos1x=11x2{\cos ^{ - 1}}x = \dfrac{{ - 1}}{{\sqrt {1 - {x^2}} }}, hence substituting it below:
limx1(012(cos1x)(11x2))12(x+1)(1+0)\Rightarrow \mathop {\lim }\limits_{x \to - 1} \dfrac{{\left( {0 - \dfrac{1}{{2\sqrt {\left( {{{\cos }^{ - 1}}x} \right)} }}\left( {\dfrac{{ - 1}}{{\sqrt {1 - {x^2}} }}} \right)} \right)}}{{\dfrac{1}{{2\sqrt {\left( {x + 1} \right)} }}\left( {1 + 0} \right)}}
limx112(cos1x)(11x2)12(x+1)\Rightarrow \mathop {\lim }\limits_{x \to - 1} \dfrac{{\dfrac{1}{{2\sqrt {\left( {{{\cos }^{ - 1}}x} \right)} }}\left( {\dfrac{1}{{\sqrt {1 - {x^2}} }}} \right)}}{{\dfrac{1}{{2\sqrt {\left( {x + 1} \right)} }}}}
Now 2 gets cancelled in both the numerator and the denominator, and substituting the limit of x1x \to - 1:

limx11(cos1(1))(11(1)2)1((1)+1) \Rightarrow \mathop {\lim }\limits_{x \to - 1} \dfrac{{\dfrac{1}{{\sqrt {\left( {{{\cos }^{ - 1}}\left( { - 1} \right)} \right)} }}\left( {\dfrac{1}{{\sqrt {1 - {{\left( { - 1} \right)}^2}} }}} \right)}}{{\dfrac{1}{{\sqrt {\left( {\left( { - 1} \right) + 1} \right)} }}}}
1π(111)1(11)\Rightarrow \dfrac{{\dfrac{1}{{\sqrt \pi }}\left( {\dfrac{1}{{\sqrt {1 - 1} }}} \right)}}{{\dfrac{1}{{\sqrt {\left( {1 - 1} \right)} }}}}
Here in the numerator and the denominator the expression 11\sqrt {1 - 1} gets cancelled, as shown :
1π\Rightarrow \dfrac{1}{{\sqrt \pi }}

limx1π(cos1x)(x+1)=1π\therefore \mathop {\lim }\limits_{x \to - 1} \dfrac{{\sqrt \pi - \sqrt {\left( {{{\cos }^{ - 1}}x} \right)} }}{{\sqrt {\left( {x + 1} \right)} }} = \dfrac{1}{{\sqrt \pi }}

Note:
Please note that in mathematics, more specifically in calculus, L’Hospital’s rule provides a technique to evaluate limits of indeterminate forms. Application of the rule often converts an indeterminate form to an expression that can be easily evaluated by substitution.