Solveeit Logo

Question

Question: \(\mathop {\lim }\limits_{x \to 0} \dfrac{{{{(1 - \cos 2x)}^2}}}{{2x\tan x - x\tan 2x}}\) A) \(2\...

limx0(1cos2x)22xtanxxtan2x\mathop {\lim }\limits_{x \to 0} \dfrac{{{{(1 - \cos 2x)}^2}}}{{2x\tan x - x\tan 2x}}
A) 22
B) 12 - \dfrac{1}{2}
C) 2 - 2
D) 12\dfrac{1}{2}

Explanation

Solution

In this question in numerator use, cos2x=12sin2x\cos 2x = 1 - 2{\sin ^2}x , Afterwards multiple and divide by x3{x^3} and we know that limx0sinxx=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1 while in denominator use the expansion of tanx\tan x and simplify it to get required answer.

Complete step-by-step answer:
As in the given question limx0(1cos2x)22xtanxxtan2x\mathop {\lim }\limits_{x \to 0} \dfrac{{{{(1 - \cos 2x)}^2}}}{{2x\tan x - x\tan 2x}} first in the numerator
Use the formula cos2x=12sin2x\cos 2x = 1 - 2{\sin ^2}x
Hence
limx0(11+2sin2x)22xtanxxtan2x\mathop {\lim }\limits_{x \to 0} \dfrac{{{{(1 - 1 + 2{{\sin }^2}x)}^2}}}{{2x\tan x - x\tan 2x}}
limx04sin4xx(2tanxtan2x)\mathop {\lim }\limits_{x \to 0} \dfrac{{4{{\sin }^4}x}}{{x(2\tan x - \tan 2x)}}
Now multiple and divide by x3{x^3} than use the property limx0sinxx=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1
limx04sin4x×x3x4(2tanxtan2x)\mathop {\lim }\limits_{x \to 0} \dfrac{{4{{\sin }^4}x \times {x^3}}}{{{x^4}(2\tan x - \tan 2x)}}
limx04x3(2tanxtan2x)(sinxx)4\mathop {\lim }\limits_{x \to 0} \dfrac{{4{x^3}}}{{(2\tan x - \tan 2x)}}{\left( {\dfrac{{\sin x}}{x}} \right)^4}
As from above limx0sinxx=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1
Then limx04x3(2tanxtan2x)\mathop {\lim }\limits_{x \to 0} \dfrac{{4{x^3}}}{{(2\tan x - \tan 2x)}}
Now for the denominator we have to use the expansion of tanx\tan x
We know that the expansion of tanx=x+x33+2x515..........\tan x = x + \dfrac{{{x^3}}}{3} + \dfrac{{2{x^5}}}{{15}}..........
Similarly tan2x=2x+(2x)33+2(2x)515..........\tan 2x = 2x + \dfrac{{{{(2x)}^3}}}{3} + \dfrac{{2{{(2x)}^5}}}{{15}}..........
Now by putting these values in the above equation
\mathop {\lim }\limits_{x \to 0} \dfrac{{4{x^3}}}{{\left\\{ {2\left( {x + \dfrac{{{x^3}}}{3} + \dfrac{{2{x^5}}}{{15}}..........} \right) - \left( {2x + \dfrac{{{{(2x)}^3}}}{3} + \dfrac{{2{{(2x)}^5}}}{{15}}..........} \right)} \right\\}}}
limx04x3(2x+2x33+4x515..........2x(2x)332(2x)515........)\mathop {\lim }\limits_{x \to 0} \dfrac{{4{x^3}}}{{\left( {2x + \dfrac{{2{x^3}}}{3} + \dfrac{{4{x^5}}}{{15}}.......... - 2x - \dfrac{{{{(2x)}^3}}}{3} - \dfrac{{2{{(2x)}^5}}}{{15}}........} \right)}}
On dividing by x3{x^3} on denominator and numerator

limx04(23+4x215..........832(2)5x215........)\mathop {\lim }\limits_{x \to 0} \dfrac{4}{{\left( {\dfrac{2}{3} + \dfrac{{4{x^2}}}{{15}}.......... - \dfrac{8}{3} - \dfrac{{2{{(2)}^5}{x^2}}}{{15}}........} \right)}}
By applying limx0\mathop {\lim }\limits_{x \to 0} , Now all the term containing x will equal to 00
4(2383)\dfrac{4}{{\left( {\dfrac{2}{3} - \dfrac{8}{3}} \right)}}
42\dfrac{4}{{ - 2}}
That is equal to 2 - 2.

So, the correct answer is “Option C”.

Note: Whenever the trigonometric functions are not solved further in limit problems apply the expansion of the trigonometric function then it will solve easily without taking much time .Always expand the limit the power of x in the numerator is equal or greater to the power of the denominator otherwise the question will not proceed to the answer .