Question
Question: \(\mathop {\lim }\limits_{x \to 0} \dfrac{{{{(1 - \cos 2x)}^2}}}{{2x\tan x - x\tan 2x}}\) A) \(2\...
x→0lim2xtanx−xtan2x(1−cos2x)2
A) 2
B) −21
C) −2
D) 21
Solution
In this question in numerator use, cos2x=1−2sin2x , Afterwards multiple and divide by x3 and we know that x→0limxsinx=1 while in denominator use the expansion of tanx and simplify it to get required answer.
Complete step-by-step answer:
As in the given question x→0lim2xtanx−xtan2x(1−cos2x)2 first in the numerator
Use the formula cos2x=1−2sin2x
Hence
x→0lim2xtanx−xtan2x(1−1+2sin2x)2
x→0limx(2tanx−tan2x)4sin4x
Now multiple and divide by x3 than use the property x→0limxsinx=1
x→0limx4(2tanx−tan2x)4sin4x×x3
x→0lim(2tanx−tan2x)4x3(xsinx)4
As from above x→0limxsinx=1
Then x→0lim(2tanx−tan2x)4x3
Now for the denominator we have to use the expansion of tanx
We know that the expansion of tanx=x+3x3+152x5..........
Similarly tan2x=2x+3(2x)3+152(2x)5..........
Now by putting these values in the above equation
\mathop {\lim }\limits_{x \to 0} \dfrac{{4{x^3}}}{{\left\\{ {2\left( {x + \dfrac{{{x^3}}}{3} + \dfrac{{2{x^5}}}{{15}}..........} \right) - \left( {2x + \dfrac{{{{(2x)}^3}}}{3} + \dfrac{{2{{(2x)}^5}}}{{15}}..........} \right)} \right\\}}}
x→0lim(2x+32x3+154x5..........−2x−3(2x)3−152(2x)5........)4x3
On dividing by x3 on denominator and numerator
x→0lim(32+154x2..........−38−152(2)5x2........)4
By applying x→0lim , Now all the term containing x will equal to 0
(32−38)4
−24
That is equal to −2.
So, the correct answer is “Option C”.
Note: Whenever the trigonometric functions are not solved further in limit problems apply the expansion of the trigonometric function then it will solve easily without taking much time .Always expand the limit the power of x in the numerator is equal or greater to the power of the denominator otherwise the question will not proceed to the answer .