Solveeit Logo

Question

Question: The number of ordered pairs of positive integers $(m, n)$ satisfying $m \le 2n \le 60, n \le 2m \le ...

The number of ordered pairs of positive integers (m,n)(m, n) satisfying m2n60,n2m60m \le 2n \le 60, n \le 2m \le 60 is

A

240

B

480

C

900

D

none of these

Answer

480

Explanation

Solution

The problem asks us to find the number of ordered pairs of positive integers (m,n)(m, n) satisfying the given inequalities:

  1. m2n60m \le 2n \le 60
  2. n2m60n \le 2m \le 60

Let's break down these inequalities:

From m2n60m \le 2n \le 60:

  • m2nm \le 2n
  • 2n60    n302n \le 60 \implies n \le 30

From n2m60n \le 2m \le 60:

  • n2mn \le 2m
  • 2m60    m302m \le 60 \implies m \le 30

Since mm and nn are positive integers, we have m1m \ge 1 and n1n \ge 1. Combining all conditions, we need to find the number of pairs (m,n)(m, n) such that:

(A) 1m301 \le m \le 30 (B) 1n301 \le n \le 30 (C) m2nm \le 2n (D) n2mn \le 2m

Notice that the conditions are symmetric with respect to mm and nn. If (m,n)(m, n) is a solution, then (n,m)(n, m) is also a solution. This suggests we can count solutions for m=nm=n, m<nm<n, and m>nm>n separately.

Case 1: m=nm=n

Substitute n=mn=m into the inequalities: m2m60m \le 2m \le 60

The condition m2mm \le 2m is true for all positive integers mm.

The condition 2m602m \le 60 implies m30m \le 30.

So, for m=nm=n, any integer mm from 1 to 30 will satisfy the conditions. The pairs are (1,1),(2,2),,(30,30)(1,1), (2,2), \dots, (30,30). Number of pairs for m=nm=n is 30.

Case 2: m<nm<n

We need to satisfy m<nm < n, along with conditions (A), (B), (C), (D). Since m<nm < n and m,nm, n are positive integers, m1    n2m \ge 1 \implies n \ge 2.

Condition (C) m2nm \le 2n: Since m<nm < n, and nn is positive, mn<2nm \le n < 2n is always true. So m2nm \le 2n is automatically satisfied.

Thus, for m<nm<n, we only need to satisfy:

(A) 1m301 \le m \le 30 (B) m<n30m < n \le 30 (D) n2mn \le 2m

Combining (B) and (D), we need m<nmin(2m,30)m < n \le \min(2m, 30). We will iterate through possible values of mm from 1 to 30.

Subcase 2.1: 2m30    m152m \le 30 \implies m \le 15. For m{1,2,,15}m \in \{1, 2, \dots, 15\}, the range for nn is m<n2mm < n \le 2m. The number of possible values for nn is 2m(m+1)+1=m2m - (m+1) + 1 = m.

  • If m=1m=1, 1<n21 < n \le 2. So n=2n=2. (1 pair: (1,2)(1,2))
  • If m=2m=2, 2<n42 < n \le 4. So n{3,4}n \in \{3,4\}. (2 pairs: (2,3),(2,4)(2,3), (2,4))
  • ...
  • If m=15m=15, 15<n3015 < n \le 30. So n{16,,30}n \in \{16, \dots, 30\}. (15 pairs: (15,16),,(15,30)(15,16), \dots, (15,30))

The total number of pairs for this subcase is m=115m=15×(15+1)2=15×162=15×8=120\sum_{m=1}^{15} m = \frac{15 \times (15+1)}{2} = \frac{15 \times 16}{2} = 15 \times 8 = 120.

Subcase 2.2: 2m>30    m>152m > 30 \implies m > 15. For m{16,17,,30}m \in \{16, 17, \dots, 30\}, the range for nn is m<n30m < n \le 30. (Since 2m>302m > 30, min(2m,30)=30\min(2m, 30) = 30). The number of possible values for nn is 30(m+1)+1=30m30 - (m+1) + 1 = 30 - m.

  • If m=16m=16, 16<n3016 < n \le 30. So n{17,,30}n \in \{17, \dots, 30\}. Number of pairs =3016=14= 30-16 = 14.
  • If m=17m=17, 17<n3017 < n \le 30. So n{18,,30}n \in \{18, \dots, 30\}. Number of pairs =3017=13= 30-17 = 13.
  • ...
  • If m=29m=29, 29<n3029 < n \le 30. So n=30n=30. Number of pairs =3029=1= 30-29 = 1.
  • If m=30m=30, 30<n3030 < n \le 30. No possible values for nn. Number of pairs =0= 0.

The total number of pairs for this subcase is m=1629(30m)\sum_{m=16}^{29} (30-m). Let k=30mk = 30-m. When m=16,k=14m=16, k=14. When m=29,k=1m=29, k=1. So the sum is k=114k=14×(14+1)2=14×152=7×15=105\sum_{k=1}^{14} k = \frac{14 \times (14+1)}{2} = \frac{14 \times 15}{2} = 7 \times 15 = 105.

Total number of pairs for m<nm<n is 120+105=225120 + 105 = 225.

Case 3: m>nm>n

Due to the symmetry of the conditions, the number of pairs for m>nm>n is the same as the number of pairs for m<nm<n. Number of pairs for m>nm>n is 225.

Total Number of Ordered Pairs

Total pairs = (pairs for m=nm=n) + (pairs for m<nm<n) + (pairs for m>nm>n) Total pairs = 30+225+225=30+450=48030 + 225 + 225 = 30 + 450 = 480.