Solveeit Logo

Question

Question: \[\mathbf{\sin}\mathbf{1}\mathbf{6}\mathbf{3}^{\mathbf{o}}\mathbf{\cos}\mathbf{3}\mathbf{4}\mathbf{7...

sin163ocos347o+sin73osin167o=\mathbf{\sin}\mathbf{1}\mathbf{6}\mathbf{3}^{\mathbf{o}}\mathbf{\cos}\mathbf{3}\mathbf{4}\mathbf{7}^{\mathbf{o}}\mathbf{+}\mathbf{\sin}\mathbf{7}\mathbf{3}^{\mathbf{o}}\mathbf{\sin}\mathbf{1}\mathbf{6}\mathbf{7}^{\mathbf{o}}\mathbf{=}

A

0

B

1/21/2

C

1

D

None of these

Answer

1/21/2

Explanation

Solution

sin(90o+73o).cos(360o13o)+sin73o.sin(180o13o)\sin(90^{o} + 73^{o}).\cos(360^{o} - 13^{o}) + \sin 73^{o}.\sin(180^{o} - 13^{o}) =cos73o.cos13o+sin73o.sin13o\cos 73^{o}.\cos 13^{o} + \sin 73^{o}.\sin 13^{o}

=cos(73o13o)=cos60o=12= \cos(73^{o} - 13^{o}) = \cos 60^{o} = \frac{1}{2}.