Solveeit Logo

Question

Question: \(\mathbf{r} \times \mathbf{a} = \mathbf{b} \times \mathbf{a};\mathbf{r} \times \mathbf{b} = \mathbf...

r×a=b×a;r×b=a×b;a0;b0;aλb,\mathbf{r} \times \mathbf{a} = \mathbf{b} \times \mathbf{a};\mathbf{r} \times \mathbf{b} = \mathbf{a} \times \mathbf{b};\mathbf{a} \neq 0;\mathbf{b} \neq 0;\mathbf{a} \neq \lambda\mathbf{b}, a is not

perpendicular to b, then r=\mathbf{r} =

A

ab\mathbf{a} - \mathbf{b}

B

a+b\mathbf{a} + \mathbf{b}

C

a×b+a\mathbf{a} \times \mathbf{b} + \mathbf{a}

D

a×b+b\mathbf{a} \times \mathbf{b} + \mathbf{b}

Answer

a+b\mathbf{a} + \mathbf{b}

Explanation

Solution

r×ab×a=0\mathbf{r} \times \mathbf{a} - \mathbf{b} \times \mathbf{a} = 0 and r×b+b×a=0\mathbf{r} \times \mathbf{b} + \mathbf{b} \times \mathbf{a} = 0

Adding, we get r×(a+b)=0\mathbf{r} \times (\mathbf{a} + \mathbf{b}) = 0

But as we are given aλb,\mathbf{a} \neq \lambda\mathbf{b}, therefore r=a+b.\mathbf{r} = \mathbf{a} + \mathbf{b}.