Solveeit Logo

Question

Question: \(\mathbf{p} = 2\mathbf{a} - 3\mathbf{b},\mathbf{q} = \mathbf{a} - 2\mathbf{b} + \mathbf{c},\mathbf{...

p=2a3b,q=a2b+c,r=3a+b+2c;\mathbf{p} = 2\mathbf{a} - 3\mathbf{b},\mathbf{q} = \mathbf{a} - 2\mathbf{b} + \mathbf{c},\mathbf{r} = - 3\mathbf{a} + \mathbf{b} + 2\mathbf{c}; where a, b and c being non-zero, non-coplanar vectors, then the vector 2a+3bc- 2\mathbf{a} + 3\mathbf{b} - \mathbf{c} is equal to

A

p4q\mathbf{p} - 4\mathbf{q}

B

7q+r5\frac{- 7\mathbf{q} + \mathbf{r}}{5}

C

2p3q+r2\mathbf{p} - 3\mathbf{q} + \mathbf{r}

D

4p2r4\mathbf{p} - 2\mathbf{r}

Answer

7q+r5\frac{- 7\mathbf{q} + \mathbf{r}}{5}

Explanation

Solution

Let 2a+3bc=xp+yq+zr- 2\mathbf{a} + 3\mathbf{b} - \mathbf{c} = x\mathbf{p} + y\mathbf{q} + z\mathbf{r}

2a+3bc\Rightarrow - 2\mathbf{a} + 3\mathbf{b} - \mathbf{c}

=(2x+y3z)a+(3x2y+z)b+(y+2z)c= ( 2 x + y - 3 z ) \mathbf { a } + ( - 3 x - 2 y + z ) \mathbf { b } + ( y + 2 z ) \mathbf { c }

2x+y3z=2,\therefore 2x + y - 3z = - 2, 3x2y+z=3- 3x - 2y + z = 3 and y+2z=1y + 2z = - 1

Solving these, we get x=0,x = 0, y=75,y = - \frac{7}{5}, z=15z = \frac{1}{5}

2a+3bc=(7q+r)5.- 2\mathbf{a} + 3\mathbf{b} - \mathbf{c} = \frac{( - 7\mathbf{q} + \mathbf{r})}{5}.

Trick : Check alternates one by one

i.e., (1) p4q=2a+5b4c\mathbf{p} - 4\mathbf{q} = - 2\mathbf{a} + 5\mathbf{b} - 4\mathbf{c}

(2) 7q+r5=2a+3bc\frac{- 7\mathbf{q} + \mathbf{r}}{5} = - 2\mathbf{a} + 3\mathbf{b} - \mathbf{c}.