Question
Question: \(\mathbf{p} = 2\mathbf{a} - 3\mathbf{b},\mathbf{q} = \mathbf{a} - 2\mathbf{b} + \mathbf{c},\mathbf{...
p=2a−3b,q=a−2b+c,r=−3a+b+2c; where a, b and c being non-zero, non-coplanar vectors, then the vector −2a+3b−c is equal to
A
p−4q
B
5−7q+r
C
2p−3q+r
D
4p−2r
Answer
5−7q+r
Explanation
Solution
Let −2a+3b−c=xp+yq+zr
⇒−2a+3b−c
=(2x+y−3z)a+(−3x−2y+z)b+(y+2z)c
∴2x+y−3z=−2, −3x−2y+z=3 and y+2z=−1
Solving these, we get x=0, y=−57, z=51
∴ −2a+3b−c=5(−7q+r).
Trick : Check alternates one by one
i.e., (1) p−4q=−2a+5b−4c
(2) 5−7q+r=−2a+3b−c.