Solveeit Logo

Question

Question: \[\mathbf{\cos}\mathbf{e}\mathbf{c}^{\mathbf{-}\mathbf{1}}\sqrt{\mathbf{10}}\mathbf{+}\mathbf{\cos}\...

}$$$\mathbf{+}\mathbf{\cos}\mathbf{e}\mathbf{c}^{\mathbf{-}\mathbf{1}}\sqrt{\left( \mathbf{n}^{\mathbf{2}}\mathbf{+ 1} \right)\left( \mathbf{n}^{\mathbf{2}}\mathbf{+ 2n + 2} \right)}$**is.............**
A

tan1(n+1)π4\tan^{- 1}(n + 1) - \frac{\pi}{4}

B

tan1(n1)π4\mathbf{\tan}^{\mathbf{-}\mathbf{1}}\left( \mathbf{n}\mathbf{-}\mathbf{1} \right)\mathbf{-}\frac{\mathbf{\pi}}{\mathbf{4}}

C

tan1(n+1)π2\mathbf{\tan}^{\mathbf{- 1}}\left( \mathbf{n + 1} \right)\mathbf{-}\frac{\mathbf{\pi}}{\mathbf{2}}

D

tan1(n1)π2\tan^{- 1}(n - 1) - \frac{\pi}{2}

Answer

tan1(n+1)π4\tan^{- 1}(n + 1) - \frac{\pi}{4}

Explanation

Solution

Let θ=cosec1(n2+1)(n2+2n+2)\theta = \cos ec^{- 1}\sqrt{\left( n^{2} + 1 \right)\left( n^{2} + 2n + 2 \right)}

⇒ cosec2θ = (n2+1)(n2+2n+2)\left( n^{2} + 1 \right)\left( n^{2} + 2n + 2 \right)

=(n2+1)(n2+1+2n+1)\left( n^{2} + 1 \right)\left( n^{2} + 1 + 2n + 1 \right)

=(n2+1)2+2n(n2+1)+(n2)+1\left( n^{2} + 1 \right)^{2} + 2n\left( n^{2} + 1 \right) + \left( n^{2} \right) + 1 =(n2+n+1)2+1\left( n^{2} + n + 1 \right)^{2} + 1

⇒ cot2θ = (n2+n+1)2\left( n^{2} + n + 1 \right)^{2}

tanθ=1n2+n+1=(n+1)n1+(n+1)n\tan\theta = \frac{1}{n^{2} + n + 1} = \frac{(n + 1) - n}{1 + (n + 1)n}θ=tan1[(n+1)n1+(n+1)n]=tan1(n+1)tan1n\theta = \tan^{- 1}\left\lbrack \frac{(n + 1) - n}{1 + (n + 1)n} \right\rbrack = \tan^{- 1}(n + 1) - \tan^{- 1}nThus, sum to n terms of the given series.

=(tan12tan11)+(tan13tan12)\left( \tan^{- 1}2 - \tan^{- 1}1 \right) + \left( \tan^{- 1}3 - \tan^{- 1}2 \right)

+(tan14tan13+........+[tan1(n+1)tan1n])\left( \tan^{- 1}4 - \tan^{- 1}3 + ........ + \left\lbrack \tan^{- 1}(n + 1) - \tan^{- 1}n \right\rbrack \right)

= tan1(n+1)tan11=tan1(n+1)π4\tan^{- 1}(n + 1) - \tan^{- 1}1 = \tan^{- 1}(n + 1) - \frac{\pi}{4}