Question
Question: \[\mathbf{\cos}\mathbf{e}\mathbf{c}^{\mathbf{-}\mathbf{1}}\sqrt{\mathbf{10}}\mathbf{+}\mathbf{\cos}\...
}$$$\mathbf{+}\mathbf{\cos}\mathbf{e}\mathbf{c}^{\mathbf{-}\mathbf{1}}\sqrt{\left( \mathbf{n}^{\mathbf{2}}\mathbf{+ 1} \right)\left( \mathbf{n}^{\mathbf{2}}\mathbf{+ 2n + 2} \right)}$**is.............**
A
tan−1(n+1)−4π
B
tan−1(n−1)−4π
C
tan−1(n+1)−2π
D
tan−1(n−1)−2π
Answer
tan−1(n+1)−4π
Explanation
Solution
Let θ=cosec−1(n2+1)(n2+2n+2)
⇒ cosec2θ = (n2+1)(n2+2n+2)
=(n2+1)(n2+1+2n+1)
=(n2+1)2+2n(n2+1)+(n2)+1 =(n2+n+1)2+1
⇒ cot2θ = (n2+n+1)2
⇒tanθ=n2+n+11=1+(n+1)n(n+1)−n⇒θ=tan−1[1+(n+1)n(n+1)−n]=tan−1(n+1)−tan−1nThus, sum to n terms of the given series.
=(tan−12−tan−11)+(tan−13−tan−12)
+(tan−14−tan−13+........+[tan−1(n+1)−tan−1n])
= tan−1(n+1)−tan−11=tan−1(n+1)−4π