Solveeit Logo

Question

Question: \(\mathbf{a},\mathbf{b}\) and **c** are three vectors with magnitude \(|\mathbf{a}| = 4,\) \(|\mathb...

a,b\mathbf{a},\mathbf{b} and c are three vectors with magnitude a=4,|\mathbf{a}| = 4, b=4,|\mathbf{b}| = 4, c=2|\mathbf{c}| = 2 and such that a\mathbf{a} is perpendicular to (b+c),b(\mathbf{b} + \mathbf{c}),\mathbf{b} is perpendicular to (c+a)(\mathbf{c} + \mathbf{a}) and c\mathbf{c} is perpendicular to (a+b).(\mathbf{a} + \mathbf{b}). It follows that a+b+c|\mathbf{a} + \mathbf{b} + \mathbf{c}| is equal to

A

9

B

6

C

5

D

4

Answer

6

Explanation

Solution

Here |a|=4; b=4;c=2|\mathbf{b}| = 4;|\mathbf{c}| = 2

and a.(b+c)=0a.b+a.c=0\mathbf{a}.(\mathbf{b} + \mathbf{c}) = 0 \Rightarrow \mathbf{a}.\mathbf{b} + \mathbf{a}.\mathbf{c} = 0 .....(i)

b.(c+a)=0b.c+b.a=0\mathbf{b}.(\mathbf{c} + \mathbf{a}) = 0 \Rightarrow \mathbf{b}.\mathbf{c} + \mathbf{b}.\mathbf{a} = 0 .....(ii)

c.(a+b)=0c.a+c.b=0\mathbf{c}.(\mathbf{a} + \mathbf{b}) = 0 \Rightarrow \mathbf{c}.\mathbf{a} + \mathbf{c}.\mathbf{b} = 0 .....(iii)

Adding (i), (ii) and (iii), we get, 2[a.b+b.c+c.a]=02\lbrack\mathbf{a}.\mathbf{b} + \mathbf{b}.\mathbf{c} + \mathbf{c}.\mathbf{a}\rbrack = 0

a+b+c=a2+b2+c2+2(a.b+b.c+c.a)|\mathbf{a} + \mathbf{b} + \mathbf{c}| = \sqrt{|\mathbf{a}|^{2} + |\mathbf{b}|^{2} + |\mathbf{c}|^{2} + 2(\mathbf{a}.\mathbf{b} + \mathbf{b}.\mathbf{c} + \mathbf{c}.\mathbf{a})}

=a2+b2+c2= \sqrt{|\mathbf{a}|^{2} + |\mathbf{b}|^{2} + |\mathbf{c}|^{2}}=16+16+4\sqrt{16 + 16 + 4}

a+b+c=6|\mathbf{a} + \mathbf{b} + \mathbf{c}| = 6.