Solveeit Logo

Question

Question: \(|\mathbf{a} \times \mathbf{i}|^{2} + |\mathbf{a} \times \mathbf{j}|^{2} + |\mathbf{a} \times \math...

a×i2+a×j2+a×k2=|\mathbf{a} \times \mathbf{i}|^{2} + |\mathbf{a} \times \mathbf{j}|^{2} + |\mathbf{a} \times \mathbf{k}|^{2} =

A

a2|\mathbf{a}|^{2}

B

2a22|\mathbf{a}|^{2}

C

3a23|\mathbf{a}|^{2}

D

4a24|\mathbf{a}|^{2}

Answer

2a22|\mathbf{a}|^{2}

Explanation

Solution

a×i2=ijka1a2a31002|\mathbf{a} \times \mathbf{i}|^{2} = \left| \begin{matrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_{1} & a_{2} & a_{3} \\ 1 & 0 & 0 \end{matrix} \right|^{2}, (Sincea=a1i+a2j+a3k)(\text{Since}\mathbf{a} = a_{1}\mathbf{i} + a_{2}\mathbf{j} + a_{3}\mathbf{k})

=a3ja2k2=a32+a22= |a_{3}\mathbf{j} - a_{2}\mathbf{k}|^{2} = a_{3}^{2} + a_{2}^{2}

Similarly, a×j2=a12+a32|\mathbf{a} \times \mathbf{j}|^{2} = a_{1}^{2} + a_{3}^{2} and a×k2=a12+a22|\mathbf{a} \times \mathbf{k}|^{2} = a_{1}^{2} + a_{2}^{2}

Hence the required result can be given as

2(a12+a22+a32)=2a2.2(a_{1}^{2} + a_{2}^{2} + a_{3}^{2}) = 2|\mathbf{a}|^{2}.