Solveeit Logo

Question

Question: \(|(\mathbf{a} \times \mathbf{b}).\mathbf{c}| = |\mathbf{a}||\mathbf{b}||\mathbf{c}|,\) if...

(a×b).c=abc,|(\mathbf{a} \times \mathbf{b}).\mathbf{c}| = |\mathbf{a}||\mathbf{b}||\mathbf{c}|, if

A

a.b=b.c=0\mathbf{a}.\mathbf{b} = \mathbf{b}.\mathbf{c} = 0

B

b.c=c.a=0\mathbf{b}.\mathbf{c} = \mathbf{c}.\mathbf{a} = 0

C

c.a=a.b=0\mathbf{c}.\mathbf{a} = \mathbf{a}.\mathbf{b} = 0

D

a.b=b.c=c.a=0\mathbf{a}.\mathbf{b} = \mathbf{b}.\mathbf{c} = \mathbf{c}.\mathbf{a} = 0

Answer

a.b=b.c=c.a=0\mathbf{a}.\mathbf{b} = \mathbf{b}.\mathbf{c} = \mathbf{c}.\mathbf{a} = 0

Explanation

Solution

We have (a×b).c=abc|(\mathbf{a} \times \mathbf{b}).\mathbf{c}| = |\mathbf{a}||\mathbf{b}||\mathbf{c}|

absinθn.c=abc\Rightarrow \left| |\mathbf{a}||\mathbf{b}|\sin\theta\mathbf{n}.\mathbf{c} \right| = |\mathbf{a}||\mathbf{b}||\mathbf{c}|

abcsinθcosα=abc\Rightarrow \left| |\mathbf{a}||\mathbf{b}||\mathbf{c}|\sin\theta\cos\alpha \right| = |\mathbf{a}||\mathbf{b}||\mathbf{c}|

 sinθcosα=1θ=π2\Rightarrow \ |\sin\theta||\cos\alpha| = 1 \Rightarrow \theta = \frac{\pi}{2} and α=0\alpha = 0

ab\Rightarrow \mathbf{a}\bot\mathbf{b} and cn\mathbf{c}||\mathbf{n}

ab\Rightarrow \mathbf{a}\bot\mathbf{b} and c\mathbf{c}is perpendicular to both a\mathbf{a}and b\mathbf{b}

a,b,c\mathbf{a},\mathbf{b},\mathbf{c} are mutually perpendicular

Hence, a.b=b.c=c.a=0.\mathbf{a}.\mathbf{b} = \mathbf{b}.\mathbf{c} = \mathbf{c}.\mathbf{a} = 0.