Question
Question: \(|(\mathbf{a} \times \mathbf{b}).\mathbf{c}| = |\mathbf{a}||\mathbf{b}||\mathbf{c}|,\) if...
∣(a×b).c∣=∣a∣∣b∣∣c∣, if
A
a.b=b.c=0
B
b.c=c.a=0
C
c.a=a.b=0
D
a.b=b.c=c.a=0
Answer
a.b=b.c=c.a=0
Explanation
Solution
We have ∣(a×b).c∣=∣a∣∣b∣∣c∣
⇒∣∣a∣∣b∣sinθn.c∣=∣a∣∣b∣∣c∣
⇒∣∣a∣∣b∣∣c∣sinθcosα∣=∣a∣∣b∣∣c∣
⇒ ∣sinθ∣∣cosα∣=1⇒θ=2π and α=0
⇒a⊥b and c∣∣n
⇒a⊥b and cis perpendicular to both aand b
∴ a,b,c are mutually perpendicular
Hence, a.b=b.c=c.a=0.