Solveeit Logo

Question

Question: \[(\mathbf{a} + \mathbf{b}).(\mathbf{b} + \mathbf{c}) \times (\mathbf{a} + \mathbf{b} + \mathbf{c}) ...

(a+b).(b+c)×(a+b+c)=(\mathbf{a} + \mathbf{b}).(\mathbf{b} + \mathbf{c}) \times (\mathbf{a} + \mathbf{b} + \mathbf{c}) =

A

[a b c]

B

[a b c]

C

0

D

2[a b c]

Answer

**abca b c**

Explanation

Solution

(a+b).(b+c)×(a+b+c)(\mathbf{a} + \mathbf{b}).(\mathbf{b} + \mathbf{c}) \times (\mathbf{a} + \mathbf{b} + \mathbf{c})

=(a+b).{a×b+c×a+b×b+c×b+b×c+c×c}= (\mathbf{a} + \mathbf{b}).\{ - \mathbf{a} \times \mathbf{b} + \mathbf{c} \times \mathbf{a} + \mathbf{b} \times \mathbf{b} + \mathbf{c} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{c}\}

=(a+b).{a×b+b×c+c×a+c×b}= (\mathbf{a} + \mathbf{b}).\{ - \mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a} + \mathbf{c} \times \mathbf{b}\}

[b×b=0andc×c=0]\lbrack\because\mathbf{b} \times \mathbf{b} = 0\text{and}\mathbf{c} \times \mathbf{c} = 0\rbrack

=(a+b).(a×b+c×a)= (\mathbf{a} + \mathbf{b}).( - \mathbf{a} \times \mathbf{b} + \mathbf{c} \times \mathbf{a})

=[aab]+[aca][bab]+[bca]= - \lbrack\mathbf{aab}\rbrack + \lbrack\mathbf{aca}\rbrack - \lbrack\mathbf{bab}\rbrack + \lbrack\mathbf{bca}\rbrack

=0+00+[bca]=[abc]= 0 + 0 - 0 + \lbrack\mathbf{bca}\rbrack = \lbrack\mathbf{abc}\rbrack.