Solveeit Logo

Question

Question: \(\mathbf{1 +}\frac{\mathbf{2}^{\mathbf{3}}}{\mathbf{2!}}\mathbf{+}\frac{\mathbf{3}^{\mathbf{3}}}{\m...

1+232!+333!+434!+.........\mathbf{1 +}\frac{\mathbf{2}^{\mathbf{3}}}{\mathbf{2!}}\mathbf{+}\frac{\mathbf{3}^{\mathbf{3}}}{\mathbf{3!}}\mathbf{+}\frac{\mathbf{4}^{\mathbf{3}}}{\mathbf{4!}}\mathbf{+ .........}\mathbf{\infty} =

A

2e

B

3 e

C

4 e

D

5 e

Answer

5 e

Explanation

Solution

S=131!+232!+333!+........+n3n!+........S = \frac{1^{3}}{1!} + \frac{2^{3}}{2!} + \frac{3^{3}}{3!} + ........ + \frac{n^{3}}{n!} + ........Here Tn=n3n!T_{n} = \frac{n^{3}}{n!}

Sn=n=1n3n!=5eS_{n} = \sum_{n = 1}^{\infty}{\frac{n^{3}}{n!} = 5e}