Solveeit Logo

Question

Question: Match the list: | | List-I | | List-II ...

Match the list:

List-IList-II
(P)Electron moving in 2nd orbit in He+ ion(1)Radius of orbit in which electron is moving is 0.529 Å
(Q)Electron moving in 3rd orbit in H-atom(2)Total energy of electron is (-)13.6 x 9eV
(R)Electron moving in 1st orbit in Li+2 ion(3)Velocity of electron is 2.188×1063\frac{2.188 \times 10^6}{3} m/sec
(S)Electron moving in 2nd orbit in Be+3 ion(4)de-Broglie wavelength of electron is 15013.6A˚\sqrt{\frac{150}{13.6}} Å
(5)Radius of orbit in which electron moving is 0.529 x 9
A

(P) - (4), (Q) - (3), (R) - (2), (S) - (1)

B

(P) - (4), (Q) - (5), (R) - (2), (S) - (1)

C

(P) - (4), (Q) - (3) and (5), (R) - (2), (S) - (1)

D

(P) - (1), (Q) - (3), (R) - (2), (S) - (4)

Answer

(P) - (4), (Q) - (3) and (5), (R) - (2), (S) - (1)

Explanation

Solution

The problem requires matching properties of electrons in different atomic orbits (List-I) with specific values (List-II) using Bohr model formulas.

Formulas for Bohr Model:

  • Radius of the nn-th orbit: rn=n2Za0r_n = \frac{n^2}{Z} a_0, where a0=0.529a_0 = 0.529 Å.
  • Velocity of the electron in the nn-th orbit: vn=v1nZv_n = \frac{v_1}{n} Z, where v1=2.188×106v_1 = 2.188 \times 10^6 m/sec.
  • Total energy of the electron in the nn-th orbit: En=13.6n2Z2E_n = -\frac{13.6}{n^2} Z^2 eV.
  • de-Broglie wavelength: λn=2πrnn=2πna0Z\lambda_n = \frac{2\pi r_n}{n} = \frac{2\pi n a_0}{Z}.

Analysis of List-I items:

(P) Electron moving in 2nd orbit in He+ ion

  • Species: He+ (Z=2Z=2)
  • Orbit: n=2n=2
  • de-Broglie Wavelength: λ2=2π×2×0.5292\lambda_2 = \frac{2\pi \times 2 \times 0.529}{2} Å =2π×0.529= 2\pi \times 0.529 Å 3.324\approx 3.324 Å. Option (4) evaluation: 15013.6\sqrt{\frac{150}{13.6}} Å 11.029\approx \sqrt{11.029} Å 3.321\approx 3.321 Å. Thus, (P) matches (4).

(Q) Electron moving in 3rd orbit in H-atom

  • Species: H-atom (Z=1Z=1)
  • Orbit: n=3n=3
  • Radius: r3=321a0=9a0=9×0.529r_3 = \frac{3^2}{1} a_0 = 9 a_0 = 9 \times 0.529 Å. This matches option (5).
  • Velocity: v3=v13×1=2.188×1063v_3 = \frac{v_1}{3} \times 1 = \frac{2.188 \times 10^6}{3} m/sec. This matches option (3). Thus, (Q) matches both (3) and (5).

(R) Electron moving in 1st orbit in Li+2 ion

  • Species: Li+2 (Z=3Z=3)
  • Orbit: n=1n=1
  • Total Energy: E1=13.612×32=13.6×9E_1 = -\frac{13.6}{1^2} \times 3^2 = -13.6 \times 9 eV. This matches option (2). Thus, (R) matches (2).

(S) Electron moving in 2nd orbit in Be+3 ion

  • Species: Be+3 (Z=4Z=4)
  • Orbit: n=2n=2
  • Radius: r2=224a0=44a0=a0=0.529r_2 = \frac{2^2}{4} a_0 = \frac{4}{4} a_0 = a_0 = 0.529 Å. This matches option (1). Thus, (S) matches (1).

Summary of Matches:

  • (P) - (4)
  • (Q) - (3)
  • (Q) - (5)
  • (R) - (2)
  • (S) - (1)

The correct matches are: (P) - (4), (Q) - (3), (Q) - (5), (R) - (2), (S) - (1).