Solveeit Logo

Question

Question: Match the following: | | List-I ...

Match the following:

List-IList-II
(P)If the normal to the curve y=f(x)y=f(x) at x=0x=0 be given by the equation 3xy+3=03x-y+3=0, then the value of limx0x2{f(x2)5f(4x2)+4f(7x2)}1\lim_{x \to 0} x^2 \{f(x^2)-5f(4x^2) +4f(7x^2)\}^{-1}(1)20
(Q)Slope of tangent to the y=x2x3dt1+t2y = \int_{x^2}^{x^3} \frac{dt}{\sqrt{1+t^2}} at x=1x=1 is(2)13-\frac{1}{3}
(R)Slope of common tangent y=x2x+1y=x^2-x+1 and y=x23x+1y=x^2-3x+1 is(3)12\frac{1}{\sqrt{2}}
(S)Coordinate of the point on y2=8xy^2=8x which is nearest to the circle x2+(y+6)2=1x^2+(y+6)^2=1 is (a,b)(a,b) then a2+b2a^2+b^2 is(4)-2
A

If the normal to the curve y=f(x)y=f(x) at x=0x=0 be given by the equation 3xy+3=03x-y+3=0, then the value of limx0x2{f(x2)5f(4x2)+4f(7x2)}1\lim_{x \to 0} x^2 \{f(x^2)-5f(4x^2) +4f(7x^2)\}^{-1}

B

Slope of tangent to the y=x2x3dt1+t2y = \int_{x^2}^{x^3} \frac{dt}{\sqrt{1+t^2}} at x=1x=1 is

C

Slope of common tangent y=x2x+1y=x^2-x+1 and y=x23x+1y=x^2-3x+1 is

D

Coordinate of the point on y2=8xy^2=8x which is nearest to the circle x2+(y+6)2=1x^2+(y+6)^2=1 is (a,b)(a,b) then a2+b2a^2+b^2 is

Answer

[P-2] [Q-3] [R-4] [S-1]

Explanation

Solution

The problem requires us to match four calculus problems (P, Q, R, S) with their respective numerical answers (1, 2, 3, 4).

Part (P): We are given that the normal to the curve y=f(x)y=f(x) at x=0x=0 is 3xy+3=03x-y+3=0. The equation of the normal can be rewritten as y=3x+3y = 3x+3. The slope of the normal at x=0x=0 is mN=3m_N = 3. The slope of the tangent at x=0x=0 is f(0)f'(0). Since the tangent is perpendicular to the normal, their slopes satisfy mTmN=1m_T \cdot m_N = -1. So, f(0)3=1f(0)=13f'(0) \cdot 3 = -1 \Rightarrow f'(0) = -\frac{1}{3}. Also, the point (0,f(0))(0, f(0)) lies on the normal. Substituting x=0x=0 into the normal equation 3(0)y+3=03(0)-y+3=0, we get y=3y=3. Therefore, f(0)=3f(0)=3.

We need to evaluate the limit: L=limx0x2{f(x2)5f(4x2)+4f(7x2)}1L = \lim_{x \to 0} x^2 \{f(x^2)-5f(4x^2) +4f(7x^2)\}^{-1}. This can be written as L=limx0x2f(x2)5f(4x2)+4f(7x2)L = \lim_{x \to 0} \frac{x^2}{f(x^2)-5f(4x^2) +4f(7x^2)}. Let u=x2u=x^2. As x0x \to 0, u0u \to 0. The limit becomes: L=limu0uf(u)5f(4u)+4f(7u)L = \lim_{u \to 0} \frac{u}{f(u)-5f(4u) +4f(7u)}. Substituting u=0u=0, we get 0f(0)5f(0)+4f(0)=035(3)+4(3)=0315+12=00\frac{0}{f(0)-5f(0)+4f(0)} = \frac{0}{3-5(3)+4(3)} = \frac{0}{3-15+12} = \frac{0}{0} form. We can apply L'Hopital's Rule. Differentiating the numerator and the denominator with respect to uu: L=limu0ddu(u)ddu(f(u)5f(4u)+4f(7u))L = \lim_{u \to 0} \frac{\frac{d}{du}(u)}{\frac{d}{du}(f(u)-5f(4u) +4f(7u))} L=limu01f(u)5f(4u)4+4f(7u)7L = \lim_{u \to 0} \frac{1}{f'(u) - 5f'(4u) \cdot 4 + 4f'(7u) \cdot 7} L=limu01f(u)20f(4u)+28f(7u)L = \lim_{u \to 0} \frac{1}{f'(u) - 20f'(4u) + 28f'(7u)} Now, substitute u=0u=0: L=1f(0)20f(0)+28f(0)L = \frac{1}{f'(0) - 20f'(0) + 28f'(0)} L=1(120+28)f(0)L = \frac{1}{(1-20+28)f'(0)} L=19f(0)L = \frac{1}{9f'(0)} Substitute f(0)=13f'(0) = -\frac{1}{3}: L=19(13)=13=13L = \frac{1}{9(-\frac{1}{3})} = \frac{1}{-3} = -\frac{1}{3}. So, (P) matches with (2).

Part (Q): We need to find the slope of the tangent to y=x2x3dt1+t2y = \int_{x^2}^{x^3} \frac{dt}{\sqrt{1+t^2}} at x=1x=1. The slope of the tangent is dydx\frac{dy}{dx}. We use Leibniz integral rule: ddxa(x)b(x)F(t)dt=F(b(x))b(x)F(a(x))a(x)\frac{d}{dx} \int_{a(x)}^{b(x)} F(t) dt = F(b(x)) \cdot b'(x) - F(a(x)) \cdot a'(x). Here, F(t)=11+t2F(t) = \frac{1}{\sqrt{1+t^2}}, a(x)=x2a(x) = x^2, b(x)=x3b(x) = x^3. dydx=11+(x3)2ddx(x3)11+(x2)2ddx(x2)\frac{dy}{dx} = \frac{1}{\sqrt{1+(x^3)^2}} \cdot \frac{d}{dx}(x^3) - \frac{1}{\sqrt{1+(x^2)^2}} \cdot \frac{d}{dx}(x^2) dydx=11+x6(3x2)11+x4(2x)\frac{dy}{dx} = \frac{1}{\sqrt{1+x^6}} \cdot (3x^2) - \frac{1}{\sqrt{1+x^4}} \cdot (2x) Now, evaluate at x=1x=1: dydxx=1=11+16(312)11+14(21)\left. \frac{dy}{dx} \right|_{x=1} = \frac{1}{\sqrt{1+1^6}} \cdot (3 \cdot 1^2) - \frac{1}{\sqrt{1+1^4}} \cdot (2 \cdot 1) =123122= \frac{1}{\sqrt{2}} \cdot 3 - \frac{1}{\sqrt{2}} \cdot 2 =3222= \frac{3}{\sqrt{2}} - \frac{2}{\sqrt{2}} =12= \frac{1}{\sqrt{2}}. So, (Q) matches with (3).

Part (R): We need to find the slope of the common tangent to y1=x2x+1y_1=x^2-x+1 and y2=x23x+1y_2=x^2-3x+1. Let the slope of the tangent to y1y_1 at (x1,y1)(x_1, y_1) be m1=dy1dx=2x1m_1 = \frac{dy_1}{dx} = 2x-1. So m1=2x11m_1 = 2x_1-1. Let the slope of the tangent to y2y_2 at (x2,y2)(x_2, y_2) be m2=dy2dx=2x3m_2 = \frac{dy_2}{dx} = 2x-3. So m2=2x23m_2 = 2x_2-3. For a common tangent, the slopes must be equal: m1=m2=mm_1 = m_2 = m. 2x11=2x232x1=2x22x1=x212x_1-1 = 2x_2-3 \Rightarrow 2x_1 = 2x_2-2 \Rightarrow x_1 = x_2-1.

The equation of the tangent to y1y_1 at (x1,y1)(x_1, y_1) is Y(x12x1+1)=(2x11)(Xx1)Y - (x_1^2-x_1+1) = (2x_1-1)(X-x_1). Y=(2x11)Xx1(2x11)+x12x1+1Y = (2x_1-1)X - x_1(2x_1-1) + x_1^2-x_1+1 Y=(2x11)X2x12+x1+x12x1+1Y = (2x_1-1)X - 2x_1^2+x_1 + x_1^2-x_1+1 Y=(2x11)Xx12+1Y = (2x_1-1)X - x_1^2+1.

The equation of the tangent to y2y_2 at (x2,y2)(x_2, y_2) is Y(x223x2+1)=(2x23)(Xx2)Y - (x_2^2-3x_2+1) = (2x_2-3)(X-x_2). Y=(2x23)Xx2(2x23)+x223x2+1Y = (2x_2-3)X - x_2(2x_2-3) + x_2^2-3x_2+1 Y=(2x23)X2x22+3x2+x223x2+1Y = (2x_2-3)X - 2x_2^2+3x_2 + x_2^2-3x_2+1 Y=(2x23)Xx22+1Y = (2x_2-3)X - x_2^2+1.

For these two equations to represent the same common tangent, their constant terms must be equal: x12+1=x22+1x12=x22-x_1^2+1 = -x_2^2+1 \Rightarrow x_1^2 = x_2^2. Substitute x1=x21x_1 = x_2-1: (x21)2=x22(x_2-1)^2 = x_2^2 x222x2+1=x22x_2^2 - 2x_2 + 1 = x_2^2 2x2+1=0x2=12-2x_2 + 1 = 0 \Rightarrow x_2 = \frac{1}{2}. Now find x1x_1: x1=x21=121=12x_1 = x_2-1 = \frac{1}{2}-1 = -\frac{1}{2}. The slope of the common tangent is m=2x11=2(12)1=11=2m = 2x_1-1 = 2(-\frac{1}{2})-1 = -1-1 = -2. (Alternatively, m=2x23=2(12)3=13=2m = 2x_2-3 = 2(\frac{1}{2})-3 = 1-3 = -2). So, (R) matches with (4).

Part (S): We need to find the coordinate (a,b)(a,b) on the parabola y2=8xy^2=8x which is nearest to the circle x2+(y+6)2=1x^2+(y+6)^2=1. The center of the circle is C(0,6)C(0, -6) and its radius is r=1r=1. The point on the parabola nearest to the circle will be such that the line connecting it to the center of the circle is normal to the parabola. Let the point on the parabola be P(x0,y0)P(x_0, y_0). Since y2=8xy^2=8x, we have x0=y028x_0 = \frac{y_0^2}{8}. The equation of the parabola is y2=8xy^2=8x. Differentiating with respect to xx: 2ydydx=8dydx=4y2y \frac{dy}{dx} = 8 \Rightarrow \frac{dy}{dx} = \frac{4}{y}. The slope of the tangent at P(x0,y0)P(x_0, y_0) is mT=4y0m_T = \frac{4}{y_0}. The slope of the normal at P(x0,y0)P(x_0, y_0) is mN=1mT=y04m_N = -\frac{1}{m_T} = -\frac{y_0}{4}. The normal line passes through the center of the circle C(0,6)C(0, -6). The slope of the line segment PCPC is y0(6)x00=y0+6x0\frac{y_0 - (-6)}{x_0 - 0} = \frac{y_0+6}{x_0}. Since PCPC is normal to the parabola, its slope must be mNm_N: y0+6x0=y04\frac{y_0+6}{x_0} = -\frac{y_0}{4}. Substitute x0=y028x_0 = \frac{y_0^2}{8}: y0+6y028=y04\frac{y_0+6}{\frac{y_0^2}{8}} = -\frac{y_0}{4} 8(y0+6)y02=y04\frac{8(y_0+6)}{y_0^2} = -\frac{y_0}{4} 32(y0+6)=y0332(y_0+6) = -y_0^3 32y0+192=y0332y_0 + 192 = -y_0^3 y03+32y0+192=0y_0^3 + 32y_0 + 192 = 0. By inspection, we can test integer factors of 192. If y0=4y_0=-4: (4)3+32(4)+192=64128+192=192+192=0(-4)^3 + 32(-4) + 192 = -64 - 128 + 192 = -192 + 192 = 0. So, y0=4y_0=-4 is a solution. Then x0=y028=(4)28=168=2x_0 = \frac{y_0^2}{8} = \frac{(-4)^2}{8} = \frac{16}{8} = 2. The point (a,b)(a,b) on the parabola is (2,4)(2, -4). We need to find a2+b2a^2+b^2. a2+b2=22+(4)2=4+16=20a^2+b^2 = 2^2 + (-4)^2 = 4 + 16 = 20. So, (S) matches with (1).

Summary of Matches: (P) \to (2) (Q) \to (3) (R) \to (4) (S) \to (1)

Comparing with the given options, the correct option is [P-2] [Q-3] [R-4] [S-1].