Solveeit Logo

Question

Question: Match the following elements of \[\left| \begin{matrix} 1 & -1 & 0 \\\ 0 & 4 & 2 \\\ ...

Match the following elements of 110 042 346 \left| \begin{matrix} 1 & -1 & 0 \\\ 0 & 4 & 2 \\\ 3 & -4 & 6 \\\ \end{matrix} \right| with their cofactors and choose the correct answer
Element            Cofactor\text{Element} \;\;\;\;\;\; \text{Cofactor}
      1                                a)2\;\;\;-1 \;\;\;\;\;\; \;\;\;\;\; \;\;\;\;\; a) -2
          1                                  b)  32\;\;\;\;\;1 \;\;\;\;\;\; \;\;\;\;\;\; \;\;\;\;\; b)\;32
          3                                  c)  4\;\;\;\;\;3 \;\;\;\;\;\; \;\;\;\;\;\; \;\;\;\;\; c)\; 4
          6                                  d)  6\;\;\;\;\;6 \;\;\;\;\;\; \;\;\;\;\;\; \;\;\;\;\; d)\; 6
                                              e)6\;\;\;\;\;\; \;\;\;\;\;\; \;\;\;\;\; \;\;\;\;\;\; e) -6

(A) I - b, II – d, III – a, IV – c
(B) I - b, II – d, III – c, IV - a
(C) I - d, II – b, III – a, IV - c
(D) I - d, II – a, III – b, IV - c

Explanation

Solution

Hint: To solve the question, we have to apply the formula for cofactor of 3x3 matrix to calculate the cofactors of the given elements. To solve further apply the formula for determinant of 2x2 matrix, which will ease the procedure of solving. Solve independently for each element to avoid mistakes.

Complete step by step answer:
The given matrix 110 042 346 \left| \begin{matrix} 1 & -1 & 0 \\\ 0 & 4 & 2 \\\ 3 & -4 & 6 \\\ \end{matrix} \right|
We know that the formula for cofactor of 3x3 matrix a1,1a1,2a1,3 a2,1a2,2a2,3 a3,1a3,2a3,3 \left| \begin{matrix} {{a}_{1,1}} & {{a}_{1,2}} & {{a}_{1,3}} \\\ {{a}_{2,1}} & {{a}_{2,2}} & {{a}_{2,3}} \\\ {{a}_{3,1}} & {{a}_{3,2}} & {{a}_{3,3}} \\\ \end{matrix} \right| is given by
Δm,n=(1)m+nMm,n{{\Delta }_{m,n}}={{\left( -1 \right)}^{m+n}}\left| {{M}_{m,n}} \right|
Where matrix Mm,n{{M}_{m,n}} is formed after deleting mth{{m}^{th}} row and nth{{n}^{th}} column.
By comparing the given matrix with the general 3x3 matrix we get
a1,1=1,a1,2=1,a3,1=3,a3,3=6{{a}_{1,1}}=1,{{a}_{1,2}}=-1,{{a}_{3,1}}=3,{{a}_{3,3}}=6
For a1,1=1{{a}_{1,1}}=1
Δ1,1=(1)1+1M1,1{{\Delta }_{1,1}}={{\left( -1 \right)}^{1+1}}\left| {{M}_{1,1}} \right|

4 & 2 \\\ -4 & 6 \\\ \end{matrix} \right|$$ $${{\Delta }_{1,1}}=(1)\left| \begin{matrix} 4 & 2 \\\ -4 & 6 \\\ \end{matrix} \right|$$ We know the determinant of 2x2 matrix $$\left| \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right|$$ is equal to ad – bc. Thus, by substituting the values, we get $$\begin{aligned} & {{\Delta }_{1,1}}=\left( 4\times 6-(-4)2 \right) \\\ & =24-(-8) \\\ & =24+8 \\\ & =32 \\\ \end{aligned}$$ Thus, the cofactor of element 1 is equal to 32. For $${{a}_{1,2}}=-1$$ $${{\Delta }_{1,2}}={{\left( -1 \right)}^{1+2}}\left| {{M}_{1,2}} \right|$$ $${{\Delta }_{1,2}}={{\left( -1 \right)}^{3}}\left| \begin{matrix} 0 & 2 \\\ 3 & 6 \\\ \end{matrix} \right|$$ $${{\Delta }_{1,2}}=(-1)\left| \begin{matrix} 0 & 2 \\\ 3 & 6 \\\ \end{matrix} \right|$$ By applying the determinant of 2x2 matrix formula, we get $$\begin{aligned} & {{\Delta }_{1,2}}=-\left( 0\times 6-(3)2 \right) \\\ & =-\left( 0-6 \right) \\\ & =-(-6) \\\ & =6 \\\ \end{aligned}$$ Thus, the cofactor of element -1 is equal to 6. For $${{a}_{3,1}}=3$$ $${{\Delta }_{3,1}}={{\left( -1 \right)}^{3+1}}\left| {{M}_{3,1}} \right|$$ $${{\Delta }_{3,1}}={{\left( -1 \right)}^{4}}\left| \begin{matrix} -1 & 0 \\\ 4 & 2 \\\ \end{matrix} \right|$$ $${{\Delta }_{3,1}}=(1)\left| \begin{matrix} -1 & 0 \\\ 4 & 2 \\\ \end{matrix} \right|$$ By applying the determinant of 2x2 matrix formula, we get $$\begin{aligned} & {{\Delta }_{3,1}}=\left( (-1)\times 2-(4)0 \right) \\\ & =-2-(0) \\\ & =-2 \\\ \end{aligned}$$ Thus, the cofactor of element 3 is equal to -2. For $${{a}_{3,3}}=6$$ $${{\Delta }_{3,3}}={{\left( -1 \right)}^{3+3}}\left| {{M}_{3,3}} \right|$$ $${{\Delta }_{3,3}}={{\left( -1 \right)}^{6}}\left| \begin{matrix} 1 & -1 \\\ 0 & 4 \\\ \end{matrix} \right|$$ $${{\Delta }_{3,3}}=(1)\left| \begin{matrix} 1 & -1 \\\ 0 & 4 \\\ \end{matrix} \right|$$ By applying the determinant of 2x2 matrix formula, we get $$\begin{aligned} & {{\Delta }_{3,3}}=\left( 1\times 4-(-1)0 \right) \\\ & =4-(0) \\\ & =4 \\\ \end{aligned}$$ Thus, the cofactor of element 6 is equal to 4. Thus, the match the following is I - b, II – d, III – a, IV – c Hence, option (A) is the right choice. Note: The possibility of mistake can be, not applying the formula for cofactor of 3x3 matrix and the formula for determinant of 2x2 matrix, which will ease the procedure of solving. The alternative way of solving is option elimination method, we have to calculate cofactor of element I and eliminate the other options and find the cofactor of element 3 or 6 to find the right choice. Thus, by only finding cofactors of two elements, we can find the right choice.