Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Match the following.

A

(i) \to (s), (ii) \to (q), (iii) \to (r), (iv) \to (p)

B

(i) \to (r), (ii) \to (s), (iii) \to (q), (iv) \to (p)

C

(i) \to (r), (ii) \to (p), (iii) \to (s), (iv) \to (q)

D

(i) \to (p), (ii) \to (r), (iii) \to (q), (iv) \to (s)

Answer

(i) \to (r), (ii) \to (p), (iii) \to (s), (iv) \to (q)

Explanation

Solution

(i)\left(i\right) Put x2=cos2θx^{2 }= cos2\theta θ=12cos1x2...(i)\Rightarrow \theta = \frac{1}{2} cos^{-1}\,x^{2}\quad...\left(i\right) tan1(1+cos2θ+1cos2θ1+cos2θ1cos2θ)\therefore tan^{-1} \left(\frac{\sqrt{1+cos\,2\theta}+\sqrt{1-cos\,2\theta }}{\sqrt{1+cos\,2\theta }-\sqrt{1-cos\,2\theta }}\right) =tan1(2cosθ+2sinθ2cosθ2sinθ)= tan^{-1}\left(\frac{\sqrt{2}\,cos\,\theta +\sqrt{2}\,sin\,\theta }{\sqrt{2}\,cos\,\theta -\sqrt{2}\,sin\,\theta }\right) =tan1(cosθ+sinθcosθsinθ)= tan^{-1} \left(\frac{cos\,\theta +sin\,\theta }{cos\,\theta -sin\,\theta }\right) =tan1(1+tanθ1tanθ)= tan^{-1}\left(\frac{1+tan\,\theta }{1-tan\,\theta }\right) =tan1[tan(π4+θ)]= tan^{-1}\left[tan\left(\frac{\pi}{4}+\theta\right)\right] =π4+θ=π4+12cos1x2= \frac{\pi }{4}+\theta = \frac{\pi }{4}+\frac{1}{2} cos^{-1}\,x^{2}\,\,\,\, [Using (i)] (ii)\left(ii\right) Let cosα=35cos\,\alpha = \frac{3}{5} sinα=45,tanα=43\Rightarrow sin\,\alpha = \frac{4}{5}, tan\,\alpha = \frac{4}{3} α=tan1(43)\Rightarrow \,\alpha = tan^{-1} \left(\frac{4}{3}\right) cos1[35cosx+45sinx]\therefore cos^{-1}\left[\frac{3}{5}cos\,x + \frac{4}{5}sin\,x\right] =cos1[cosαcosx+sinαsinx]= cos^{-1}\left[cos\,\alpha\cdot cosx + sin\,\alpha \cdot sinx \right] =cos1[cos(αx)]= cos^{-1}\left[cos\,\left(\alpha -x\right)\right] =αx=tan143x= \alpha - x = tan^{-1} \frac{4}{3} - x (iii)cot1(1+sinx+1sinx1+sinx1sinx)\left(iii\right) cot^{-1} \left(\frac{\sqrt{1+sin\,x} + \sqrt{1-sin\,x}}{\sqrt{1+sin\,x} - \sqrt{1-sin\,x}}\right) =cot1(1+sinx+1sinx1+sinx1sinx×1+sinx+1sinx1+sinx+1sinx)= cot^{-1} \left(\frac{\sqrt{1+sin\,x} + \sqrt{1-sin\,x}}{\sqrt{1+sin\,x} - \sqrt{1-sin\,x}}\times \frac{\sqrt{1+sin\,x} + \sqrt{1-sin\,x}}{\sqrt{1+sin\,x} + \sqrt{1-sin\,x}}\right) =cot1((1+sinx+1sinx)2(1+sinx)(1sinx))= cot^{-1} \left(\frac{\left(\sqrt{1+sin\,x} + \sqrt{1-sin\,x}\right)^{2}}{\left(1+sin\,x\right)- \left(1-sin\,x\right)}\right) =cot1((1+sinx)+(1sinx)+2(1+sinx)(1sinx)2sinx)= cot^{-1}\left(\frac{\left(1+sin\,x\right)+\left(1-sin\,x\right)+2\sqrt{\left(1+sin\,x\right)\left(1-sin\,x\right)}}{2\,sin\,x}\right) =cot1(2+21sin2x2sinx)= cot^{-1}\left(\frac{2+2\sqrt{1-sin^{2}\,x}}{2\,sin\,x}\right) =cot1(1+cosxsinx)= cot^{-1}\left(\frac{1+\left|cos\,x\right|}{sin\,x}\right) =cot1(1+cosxsinx)= cot^{-1}\left(\frac{1+cos\,x}{sin\,x}\right) (x(0,π4)cosx>0cosx=cosx)\left(\because x\in \left(0, \frac{\pi}{4}\right)\Rightarrow cos\,x > 0 \Rightarrow \left|cos\,x\right|= cos\,x\right) =cot1(2cos2x22sinx2cosx2)= cot^{-1}\left(\frac{2cos^{2} \frac{x}{2}}{2sin \frac{x}{2} cos \frac{x}{2}}\right) =cot1(cotx2)=x2= cot^{-1}\left(cot \frac{x}{2}\right) = \frac{x}{2}. (iv)\left(iv\right) Let cot1x=ycot^{-1} \,x = y x=coty\Rightarrow x = cot\,y. cosecy=1+cot2y=1+x2\therefore cosec\,y = \sqrt{1+cot^{2}\,y} = \sqrt{1+x^{2}} siny=11+x2\Rightarrow sin\,y = \frac{1}{\sqrt{1+x^{2}}}. Let tan1(11+x2)=ztan^{-1}\left(\frac{1}{\sqrt{1+x^{2}}}\right) = z tanz=11+x2\Rightarrow tan \,z =\frac{1}{\sqrt{1+x^{2}}} secz=1+tan2z=1+11+x2=2+x21+x2\therefore sec\,z = \sqrt{1+ tan^{2}\,z} = \sqrt{1+\frac{1}{\sqrt{1+x^{2}}}} = \sqrt{\frac{2+x^{2}}{1+x^{2}}} cosz=1+x22+x2\Rightarrow cos\,z = \sqrt{\frac{1+x^{2}}{2+x^{2}}}. Now, cos(tan1(sin(cot1x)))=cos(tan1(siny))cos\left(tan^{-1} \left(sin \left(cot^{-1} \,x\right)\right)\right) = cos\left(tan^{-1} \left(sin \,y\right)\right) =cos(tan1(11+x2))= cos\left(tan^{-1}\left(\frac{1}{\sqrt{1+x^{2}}}\right)\right) =cosz=1+x22+x2= cos\,z = \sqrt{\frac{1+x^{2}}{2+x^{2}}}