Question
Mathematics Question on Inverse Trigonometric Functions
Match the following.
(i) → (s), (ii) → (q), (iii) → (r), (iv) → (p)
(i) → (r), (ii) → (s), (iii) → (q), (iv) → (p)
(i) → (r), (ii) → (p), (iii) → (s), (iv) → (q)
(i) → (p), (ii) → (r), (iii) → (q), (iv) → (s)
(i) → (r), (ii) → (p), (iii) → (s), (iv) → (q)
Solution
(i) Put x2=cos2θ ⇒θ=21cos−1x2...(i) ∴tan−1(1+cos2θ−1−cos2θ1+cos2θ+1−cos2θ) =tan−1(2cosθ−2sinθ2cosθ+2sinθ) =tan−1(cosθ−sinθcosθ+sinθ) =tan−1(1−tanθ1+tanθ) =tan−1[tan(4π+θ)] =4π+θ=4π+21cos−1x2 [Using (i)] (ii) Let cosα=53 ⇒sinα=54,tanα=34 ⇒α=tan−1(34) ∴cos−1[53cosx+54sinx] =cos−1[cosα⋅cosx+sinα⋅sinx] =cos−1[cos(α−x)] =α−x=tan−134−x (iii)cot−1(1+sinx−1−sinx1+sinx+1−sinx) =cot−1(1+sinx−1−sinx1+sinx+1−sinx×1+sinx+1−sinx1+sinx+1−sinx) =cot−1((1+sinx)−(1−sinx)(1+sinx+1−sinx)2) =cot−1(2sinx(1+sinx)+(1−sinx)+2(1+sinx)(1−sinx)) =cot−1(2sinx2+21−sin2x) =cot−1(sinx1+∣cosx∣) =cot−1(sinx1+cosx) (∵x∈(0,4π)⇒cosx>0⇒∣cosx∣=cosx) =cot−1(2sin2xcos2x2cos22x) =cot−1(cot2x)=2x. (iv) Let cot−1x=y ⇒x=coty. ∴cosecy=1+cot2y=1+x2 ⇒siny=1+x21. Let tan−1(1+x21)=z ⇒tanz=1+x21 ∴secz=1+tan2z=1+1+x21=1+x22+x2 ⇒cosz=2+x21+x2. Now, cos(tan−1(sin(cot−1x)))=cos(tan−1(siny)) =cos(tan−1(1+x21)) =cosz=2+x21+x2