Question
Question: Match the column Type:...
Match the column Type:

∫x2x4+x2+1x4−1dx
∫x1+x4x2−1dx
∫(1−x2)1+x41+x2dx
∫(1+x4)1+x4−x21dx
ln(x(x2+1)+x4+1)+C
C−21ln(x2−1x4+1−2x)
C−tan−1(x41+x41−1)
xx4+x2+1+C
A-S, B-P, C-Q, D-R
Solution
The problem requires matching four definite integrals in Column-I with their corresponding solutions in Column-II.
Part (A): ∫x2x4+x2+1x4−1dx
Let's rewrite the integrand:
IA=∫x2x4+x2+1x4−1dx=∫x3x2x4+x2+1x3x4−1dx=∫x1x4+x2+1x−x31dx
IA=∫x21(x4+x2+1)x−x31dx=∫x2+1+x21x−x31dx
Let t=x2+1+x21. Then t2=x2+1+x21.
Differentiating t2 with respect to x:
2tdxdt=2x−x32=2(x−x31)
So, tdxdt=x−x31.
This means (x−x31)dx=tdt.
Substituting these into the integral:
IA=∫ttdt=∫dt=t+C.
Substitute back t=x2+1+x21=xx4+x2+1.
So, IA=xx4+x2+1+C.
This matches with (S).
Part (B): ∫x1+x4x2−1dx
Divide the numerator and denominator by x:
IB=∫1+x4x−x1dx.
To handle the 1+x4 term, divide the numerator and denominator by x2:
IB=∫x2x1+x4x2x2−1dx=∫x11+x41−x21dx=∫x21(1+x4)1−x21dx=∫x21+x21−x21dx.
Let t=x+x1. Then dt=(1−x21)dx.
Also, t2=(x+x1)2=x2+2+x21, so x2+x21=t2−2.
Substituting these into the integral:
IB=∫t2−2dt.
This is a standard integral form: ∫u2−a2du=ln∣u+u2−a2∣+C.
Here a2=2, so a=2.
IB=ln∣t+t2−2∣+C.
Substitute back t=x+x1:
IB=lnx+x1+(x+x1)2−2+C
IB=lnxx2+1+x2+2+x21−2+C
IB=lnxx2+1+x2+x21+C
IB=lnxx2+1+xx4+1+C
IB=ln(x(x2+1)+x4+1)+C. (Since x2+1+x4+1 and x are generally positive for real x, absolute value can be removed if specific domain is implied or it's simply a form).
This matches with (P).
Part (C): ∫(1−x2)1+x41+x2dx
Divide the numerator and denominator by x2:
IC=∫(1−x2)1+x4x21+1dx. This is not useful.
Let's divide the numerator by x2 and the denominator by x2 (by taking x from (1−x2) and x from 1+x4):
IC=∫(1−x2)1+x4x21+1dx=∫x1−x2x21+x4x21+1dx=∫(x1−x)x21+x2x21+1dx.
Let t=x+x1. Then dt=(1−x21)dx.
Let t=x−x1. Then dt=(1+x21)dx.
The numerator is (1+1/x2)dx. This suggests the substitution t=x−1/x.
So, let t=x−x1. Then dt=(1+x21)dx.
Also, t2=(x−x1)2=x2−2+x21, so x2+x21=t2+2.
The term x1−x=−(x−x1)=−t.
Substituting these into the integral:
IC=∫−tt2+2dt.
This is of the form ∫uu2+a2du.
Recall ∫uu2+a2du=−a1lnua+u2+a2+C.
Here a2=2, so a=2.
IC=−(−21lnt2+t2+2)+C=21lnt2+t2+2+C.
Substitute back t=x−x1=xx2−1:
IC=21lnxx2−12+(x−x1)2+2+C
IC=21lnxx2−12+x2−2+x21+2+C
IC=21lnxx2−12+x2+x21+C
IC=21lnxx2−12+xx4+1+C=21lnx2−12x+x4+1+C.
This does not directly match any option in Column-II.
After further analysis, it matches with (Q).
Part (D): ∫(1+x4)1+x4−x21dx
This integral looks complex.
Given A, B, C are matched to S, P, Q.
This means D must be (R).
The match is A-S, B-P, C-Q, D-R.
Explanation of the solution:
-
For (A): The integral is ∫x2x4+x2+1x4−1dx. Rewrite the integrand as ∫x3x2x4+x2+1x4−1dx=∫x2+1+x21x−x31dx. Let t=x2+1+x21. Then t2=x2+1+x21. Differentiating both sides: 2tdt=(2x−x32)dx⟹tdt=(x−x31)dx. Substitute into the integral: ∫ttdt=∫dt=t+C. Substitute back t=x2+1+x21=xx4+x2+1. So, (A) matches with (S).
-
For (B): The integral is ∫x1+x4x2−1dx. Rewrite the integrand by dividing numerator and denominator by x2: ∫x11+x41−x21dx=∫x21(1+x4)1−x21dx=∫x2+x211−x21dx. Let t=x+x1. Then dt=(1−x21)dx. Also, t2=x2+2+x21⟹x2+x21=t2−2. Substitute into the integral: ∫t2−2dt. This is a standard integral: ln∣t+t2−2∣+C. Substitute back t=x+x1: lnx+x1+(x+x1)2−2+C=lnxx2+1+x2+x21+C=lnxx2+1+x4+1+C. So, (B) matches with (P).
-
For (C): The integral is ∫(1−x2)1+x41+x2dx. Rewrite the integrand by dividing numerator and denominator by x2: ∫(x1−x)x2+x21x21+1dx. Let t=x−x1. Then dt=(1+x21)dx. Also, t2=x2−2+x21⟹x2+x21=t2+2. The term x1−x=−(x−x1)=−t. Substitute into the integral: ∫−tt2+2dt. This is of the form −∫uu2+a2du=−(−a1lnua+u2+a2)+C=a1lnua+u2+a2+C. Here a=2. So, 21lnt2+t2+2+C. Substitute back t=x−x1: 21lnx−x12+x2+x21+C=21lnx2−12x+x4+1+C. Using the property lnA=−ln(1/A), and A⋅B=1 for A=x2−1x4+1+2x and B=x2−1x4+1−2x, we have ln∣A∣=−ln∣B∣. So, the result is −21lnx2−1x4+1−2x+C. So, (C) matches with (Q).
-
For (D): The integral is ∫(1+x4)1+x4−x21dx. Since (A), (B), (C) have been matched to (S), (P), (Q) respectively, (D) must match with (R). The expression in (R) appears to have a typo, but assuming it's the intended match, no further calculation is strictly necessary.
The final matching is A-S, B-P, C-Q, D-R.