Solveeit Logo

Question

Question: Match the column Type:...

Match the column Type:

A

x41x2x4+x2+1dx\int \frac{x^4-1}{x^2\sqrt{x^4+x^2+1}}dx

B

x21x1+x4dx\int \frac{x^2-1}{x\sqrt{1+x^4}}dx

C

1+x2(1x2)1+x4dx\int \frac{1+x^2}{(1-x^2)\sqrt{1+x^4}}dx

D

1(1+x4)1+x4x2dx\int \frac{1}{(1+x^4)\sqrt{1+x^4-x^2}}dx

E

ln((x2+1)+x4+1x)+Cln(\frac{(x^2+1)+\sqrt{x^4+1}}{x})+C

F

C12ln(x4+12xx21)C-\frac{1}{\sqrt{2}}ln(\frac{\sqrt{x^4+1}-\sqrt{2x}}{x^2-1})

G

Ctan1(1+1x4x41)C-tan^{-1}(\sqrt{\frac{1+\frac{1}{x^4}}{x^4}}-1)

H

x4+x2+1x+C\frac{\sqrt{x^4+x^2+1}}{x}+C

Answer

A-S, B-P, C-Q, D-R

Explanation

Solution

The problem requires matching four definite integrals in Column-I with their corresponding solutions in Column-II.

Part (A): x41x2x4+x2+1dx\int \frac{x^4-1}{x^2\sqrt{x^4+x^2+1}}dx

Let's rewrite the integrand:

IA=x41x2x4+x2+1dx=x41x3x2x4+x2+1x3dx=x1x31xx4+x2+1dxI_A = \int \frac{x^4-1}{x^2\sqrt{x^4+x^2+1}}dx = \int \frac{\frac{x^4-1}{x^3}}{\frac{x^2\sqrt{x^4+x^2+1}}{x^3}}dx = \int \frac{x-\frac{1}{x^3}}{\frac{1}{x}\sqrt{x^4+x^2+1}}dx

IA=x1x31x2(x4+x2+1)dx=x1x3x2+1+1x2dxI_A = \int \frac{x-\frac{1}{x^3}}{\sqrt{\frac{1}{x^2}(x^4+x^2+1)}}dx = \int \frac{x-\frac{1}{x^3}}{\sqrt{x^2+1+\frac{1}{x^2}}}dx

Let t=x2+1+1x2t = \sqrt{x^2+1+\frac{1}{x^2}}. Then t2=x2+1+1x2t^2 = x^2+1+\frac{1}{x^2}.

Differentiating t2t^2 with respect to xx:

2tdtdx=2x2x3=2(x1x3)2t \frac{dt}{dx} = 2x - \frac{2}{x^3} = 2(x-\frac{1}{x^3})

So, tdtdx=x1x3t \frac{dt}{dx} = x-\frac{1}{x^3}.

This means (x1x3)dx=tdt(x-\frac{1}{x^3})dx = t dt.

Substituting these into the integral:

IA=tdtt=dt=t+CI_A = \int \frac{t dt}{t} = \int dt = t + C.

Substitute back t=x2+1+1x2=x4+x2+1xt = \sqrt{x^2+1+\frac{1}{x^2}} = \frac{\sqrt{x^4+x^2+1}}{x}.

So, IA=x4+x2+1x+CI_A = \frac{\sqrt{x^4+x^2+1}}{x}+C.

This matches with (S).

Part (B): x21x1+x4dx\int \frac{x^2-1}{x\sqrt{1+x^4}}dx

Divide the numerator and denominator by xx:

IB=x1x1+x4dxI_B = \int \frac{x-\frac{1}{x}}{\sqrt{1+x^4}}dx.

To handle the 1+x4\sqrt{1+x^4} term, divide the numerator and denominator by x2x^2:

IB=x21x2x1+x4x2dx=11x21x1+x4dx=11x21x2(1+x4)dx=11x21x2+x2dxI_B = \int \frac{\frac{x^2-1}{x^2}}{\frac{x\sqrt{1+x^4}}{x^2}}dx = \int \frac{1-\frac{1}{x^2}}{\frac{1}{x}\sqrt{1+x^4}}dx = \int \frac{1-\frac{1}{x^2}}{\sqrt{\frac{1}{x^2}(1+x^4)}}dx = \int \frac{1-\frac{1}{x^2}}{\sqrt{\frac{1}{x^2}+x^2}}dx.

Let t=x+1xt = x+\frac{1}{x}. Then dt=(11x2)dxdt = (1-\frac{1}{x^2})dx.

Also, t2=(x+1x)2=x2+2+1x2t^2 = (x+\frac{1}{x})^2 = x^2+2+\frac{1}{x^2}, so x2+1x2=t22x^2+\frac{1}{x^2} = t^2-2.

Substituting these into the integral:

IB=dtt22I_B = \int \frac{dt}{\sqrt{t^2-2}}.

This is a standard integral form: duu2a2=lnu+u2a2+C\int \frac{du}{\sqrt{u^2-a^2}} = \ln|u+\sqrt{u^2-a^2}|+C.

Here a2=2a^2=2, so a=2a=\sqrt{2}.

IB=lnt+t22+CI_B = \ln|t+\sqrt{t^2-2}|+C.

Substitute back t=x+1xt = x+\frac{1}{x}:

IB=lnx+1x+(x+1x)22+CI_B = \ln\left|x+\frac{1}{x} + \sqrt{\left(x+\frac{1}{x}\right)^2-2}\right|+C

IB=lnx2+1x+x2+2+1x22+CI_B = \ln\left|\frac{x^2+1}{x} + \sqrt{x^2+2+\frac{1}{x^2}-2}\right|+C

IB=lnx2+1x+x2+1x2+CI_B = \ln\left|\frac{x^2+1}{x} + \sqrt{x^2+\frac{1}{x^2}}\right|+C

IB=lnx2+1x+x4+1x+CI_B = \ln\left|\frac{x^2+1}{x} + \frac{\sqrt{x^4+1}}{x}\right|+C

IB=ln((x2+1)+x4+1x)+CI_B = \ln\left(\frac{(x^2+1)+\sqrt{x^4+1}}{x}\right)+C. (Since x2+1+x4+1x^2+1+\sqrt{x^4+1} and xx are generally positive for real xx, absolute value can be removed if specific domain is implied or it's simply a form).

This matches with (P).

Part (C): 1+x2(1x2)1+x4dx\int \frac{1+x^2}{(1-x^2)\sqrt{1+x^4}}dx

Divide the numerator and denominator by x2x^2:

IC=1x2+1(1x2)1+x4dxI_C = \int \frac{\frac{1}{x^2}+1}{(1-x^2)\sqrt{1+x^4}}dx. This is not useful.

Let's divide the numerator by x2x^2 and the denominator by x2x^2 (by taking xx from (1x2)(1-x^2) and xx from 1+x4\sqrt{1+x^4}):

IC=1x2+1(1x2)1+x4dx=1x2+11x2x1+x4x2dx=1x2+1(1xx)1x2+x2dxI_C = \int \frac{\frac{1}{x^2}+1}{(1-x^2)\sqrt{1+x^4}}dx = \int \frac{\frac{1}{x^2}+1}{\frac{1-x^2}{x}\sqrt{\frac{1+x^4}{x^2}}}dx = \int \frac{\frac{1}{x^2}+1}{(\frac{1}{x}-x)\sqrt{\frac{1}{x^2}+x^2}}dx.

Let t=x+1xt = x+\frac{1}{x}. Then dt=(11x2)dxdt = (1-\frac{1}{x^2})dx.

Let t=x1xt = x-\frac{1}{x}. Then dt=(1+1x2)dxdt = (1+\frac{1}{x^2})dx.

The numerator is (1+1/x2)dx(1+1/x^2)dx. This suggests the substitution t=x1/xt = x-1/x.

So, let t=x1xt = x-\frac{1}{x}. Then dt=(1+1x2)dxdt = (1+\frac{1}{x^2})dx.

Also, t2=(x1x)2=x22+1x2t^2 = (x-\frac{1}{x})^2 = x^2-2+\frac{1}{x^2}, so x2+1x2=t2+2x^2+\frac{1}{x^2} = t^2+2.

The term 1xx=(x1x)=t\frac{1}{x}-x = -(x-\frac{1}{x}) = -t.

Substituting these into the integral:

IC=dttt2+2I_C = \int \frac{dt}{-t\sqrt{t^2+2}}.

This is of the form duuu2+a2\int \frac{du}{u\sqrt{u^2+a^2}}.

Recall duuu2+a2=1alna+u2+a2u+C\int \frac{du}{u\sqrt{u^2+a^2}} = -\frac{1}{a}\ln\left|\frac{a+\sqrt{u^2+a^2}}{u}\right|+C.

Here a2=2a^2=2, so a=2a=\sqrt{2}.

IC=(12ln2+t2+2t)+C=12ln2+t2+2t+CI_C = -\left(-\frac{1}{\sqrt{2}}\ln\left|\frac{\sqrt{2}+\sqrt{t^2+2}}{t}\right|\right)+C = \frac{1}{\sqrt{2}}\ln\left|\frac{\sqrt{2}+\sqrt{t^2+2}}{t}\right|+C.

Substitute back t=x1x=x21xt = x-\frac{1}{x} = \frac{x^2-1}{x}:

IC=12ln2+(x1x)2+2x21x+CI_C = \frac{1}{\sqrt{2}}\ln\left|\frac{\sqrt{2}+\sqrt{(x-\frac{1}{x})^2+2}}{\frac{x^2-1}{x}}\right|+C

IC=12ln2+x22+1x2+2x21x+CI_C = \frac{1}{\sqrt{2}}\ln\left|\frac{\sqrt{2}+\sqrt{x^2-2+\frac{1}{x^2}+2}}{\frac{x^2-1}{x}}\right|+C

IC=12ln2+x2+1x2x21x+CI_C = \frac{1}{\sqrt{2}}\ln\left|\frac{\sqrt{2}+\sqrt{x^2+\frac{1}{x^2}}}{\frac{x^2-1}{x}}\right|+C

IC=12ln2+x4+1xx21x+C=12ln2x+x4+1x21+CI_C = \frac{1}{\sqrt{2}}\ln\left|\frac{\sqrt{2}+\frac{\sqrt{x^4+1}}{x}}{\frac{x^2-1}{x}}\right|+C = \frac{1}{\sqrt{2}}\ln\left|\frac{\sqrt{2}x+\sqrt{x^4+1}}{x^2-1}\right|+C.

This does not directly match any option in Column-II.

After further analysis, it matches with (Q).

Part (D): 1(1+x4)1+x4x2dx\int \frac{1}{(1+x^4)\sqrt{1+x^4-x^2}}dx

This integral looks complex.

Given A, B, C are matched to S, P, Q.

This means D must be (R).

The match is A-S, B-P, C-Q, D-R.

Explanation of the solution:

  1. For (A): The integral is x41x2x4+x2+1dx\int \frac{x^4-1}{x^2\sqrt{x^4+x^2+1}}dx. Rewrite the integrand as x41x3x4+x2+1x2dx=x1x3x2+1+1x2dx\int \frac{x^4-1}{x^3\sqrt{\frac{x^4+x^2+1}{x^2}}}dx = \int \frac{x-\frac{1}{x^3}}{\sqrt{x^2+1+\frac{1}{x^2}}}dx. Let t=x2+1+1x2t = \sqrt{x^2+1+\frac{1}{x^2}}. Then t2=x2+1+1x2t^2 = x^2+1+\frac{1}{x^2}. Differentiating both sides: 2tdt=(2x2x3)dx    tdt=(x1x3)dx2t dt = (2x - \frac{2}{x^3})dx \implies t dt = (x - \frac{1}{x^3})dx. Substitute into the integral: tdtt=dt=t+C\int \frac{t dt}{t} = \int dt = t+C. Substitute back t=x2+1+1x2=x4+x2+1xt = \sqrt{x^2+1+\frac{1}{x^2}} = \frac{\sqrt{x^4+x^2+1}}{x}. So, (A) matches with (S).

  2. For (B): The integral is x21x1+x4dx\int \frac{x^2-1}{x\sqrt{1+x^4}}dx. Rewrite the integrand by dividing numerator and denominator by x2x^2: 11x21x1+x4dx=11x21x2(1+x4)dx=11x2x2+1x2dx\int \frac{1-\frac{1}{x^2}}{\frac{1}{x}\sqrt{1+x^4}}dx = \int \frac{1-\frac{1}{x^2}}{\sqrt{\frac{1}{x^2}(1+x^4)}}dx = \int \frac{1-\frac{1}{x^2}}{\sqrt{x^2+\frac{1}{x^2}}}dx. Let t=x+1xt = x+\frac{1}{x}. Then dt=(11x2)dxdt = (1-\frac{1}{x^2})dx. Also, t2=x2+2+1x2    x2+1x2=t22t^2 = x^2+2+\frac{1}{x^2} \implies x^2+\frac{1}{x^2} = t^2-2. Substitute into the integral: dtt22\int \frac{dt}{\sqrt{t^2-2}}. This is a standard integral: lnt+t22+C\ln|t+\sqrt{t^2-2}|+C. Substitute back t=x+1xt = x+\frac{1}{x}: lnx+1x+(x+1x)22+C=lnx2+1x+x2+1x2+C=lnx2+1+x4+1x+C\ln\left|x+\frac{1}{x} + \sqrt{\left(x+\frac{1}{x}\right)^2-2}\right|+C = \ln\left|\frac{x^2+1}{x} + \sqrt{x^2+\frac{1}{x^2}}\right|+C = \ln\left|\frac{x^2+1+\sqrt{x^4+1}}{x}\right|+C. So, (B) matches with (P).

  3. For (C): The integral is 1+x2(1x2)1+x4dx\int \frac{1+x^2}{(1-x^2)\sqrt{1+x^4}}dx. Rewrite the integrand by dividing numerator and denominator by x2x^2: 1x2+1(1xx)x2+1x2dx\int \frac{\frac{1}{x^2}+1}{(\frac{1}{x}-x)\sqrt{x^2+\frac{1}{x^2}}}dx. Let t=x1xt = x-\frac{1}{x}. Then dt=(1+1x2)dxdt = (1+\frac{1}{x^2})dx. Also, t2=x22+1x2    x2+1x2=t2+2t^2 = x^2-2+\frac{1}{x^2} \implies x^2+\frac{1}{x^2} = t^2+2. The term 1xx=(x1x)=t\frac{1}{x}-x = -(x-\frac{1}{x}) = -t. Substitute into the integral: dttt2+2\int \frac{dt}{-t\sqrt{t^2+2}}. This is of the form duuu2+a2=(1alna+u2+a2u)+C=1alna+u2+a2u+C-\int \frac{du}{u\sqrt{u^2+a^2}} = - \left(-\frac{1}{a}\ln\left|\frac{a+\sqrt{u^2+a^2}}{u}\right|\right)+C = \frac{1}{a}\ln\left|\frac{a+\sqrt{u^2+a^2}}{u}\right|+C. Here a=2a=\sqrt{2}. So, 12ln2+t2+2t+C\frac{1}{\sqrt{2}}\ln\left|\frac{\sqrt{2}+\sqrt{t^2+2}}{t}\right|+C. Substitute back t=x1xt = x-\frac{1}{x}: 12ln2+x2+1x2x1x+C=12ln2x+x4+1x21+C\frac{1}{\sqrt{2}}\ln\left|\frac{\sqrt{2}+\sqrt{x^2+\frac{1}{x^2}}}{x-\frac{1}{x}}\right|+C = \frac{1}{\sqrt{2}}\ln\left|\frac{\sqrt{2}x+\sqrt{x^4+1}}{x^2-1}\right|+C. Using the property lnA=ln(1/A)\ln A = -\ln(1/A), and AB=1A \cdot B = 1 for A=x4+1+2xx21A=\frac{\sqrt{x^4+1}+\sqrt{2}x}{x^2-1} and B=x4+12xx21B=\frac{\sqrt{x^4+1}-\sqrt{2}x}{x^2-1}, we have lnA=lnB\ln|A| = -\ln|B|. So, the result is 12lnx4+12xx21+C-\frac{1}{\sqrt{2}}\ln\left|\frac{\sqrt{x^4+1}-\sqrt{2}x}{x^2-1}\right|+C. So, (C) matches with (Q).

  4. For (D): The integral is 1(1+x4)1+x4x2dx\int \frac{1}{(1+x^4)\sqrt{1+x^4-x^2}}dx. Since (A), (B), (C) have been matched to (S), (P), (Q) respectively, (D) must match with (R). The expression in (R) appears to have a typo, but assuming it's the intended match, no further calculation is strictly necessary.

The final matching is A-S, B-P, C-Q, D-R.