Solveeit Logo

Question

Question: Match the Column I with Column II <table> <colgroup> <col style="width: 10%" /> <col style="width: ...

Match the Column I with Column II

Column I

Physical quantity

Column II

Dimensional

Formula

(A)

Permittivity of free

Space

(p)[M0L0T−1]
(B)Radiant flux(q)[ML3T3A2]
(C)Resistivity(r)[ML2T3]
(D)Hubble constant(s)[M1L3T4A2]
A

A – p, B – q, C – r, D – s

B

A – q, B – p, C – s, D – r

C

A – s, B – r, C – q, D – p

D

A – r, B – s, C – p, D – q

Answer

A – s, B – r, C – q, D – p

Explanation

Solution

Permittivity of free space

=Charge×charge4π×electricalforce×distance2= \frac{Ch\arg e \times ch\arg e}{4\pi \times electricalforce \times dis\tan ce^{2}}A – s

Radiant flux

=EnergyemittedTime=[ML2T2][T]=[ML2T3]= \frac{Energyemitted}{Time} = \frac{\lbrack ML^{2}T^{- 2}\rbrack}{\lbrack T\rbrack} = \lbrack ML^{2}T^{- 3}\rbrack B – r

Resistivity =Resistance×AreaLength= \frac{{Re}sis\tan ce \times Area}{Length}

[ρ]=[ML2T3A2][L2][L]=[ML3T3A2]\lbrack\rho\rbrack = \frac{\lbrack ML^{2}T^{- 3}A^{- 2}\rbrack\lbrack L^{2}\rbrack}{\lbrack L\rbrack} = \lbrack ML^{3}T -^{3}A^{- 2}\rbrack C – q

Hubble constant =RecessionspeedDistance= \frac{{Re}cessionspeed}{Dis\tan ce}

=[LT1][L]=[M0L0T1]= \frac{\lbrack LT^{- 1}\rbrack}{\lbrack L\rbrack} = \lbrack M^{0}L^{0}T^{- 1}\rbrack D – p