Solveeit Logo

Question

Question: Match the Column I with Column II <table> <colgroup> <col style="width: 10%" /> <col style="width: ...

Match the Column I with Column II

Column I

Units

Column II

Dimensional formulae

(A)Pa s(p)[M0L2T−2K−1]
(B)N m K-1(q)[MLT−3K−1]
(C)J kg-1 K-1(r)[ML−1T−1]
(D)W m-1 K-1(s)[ML2T−2K−1]
A

A – q, B – p, C – r, D – s

B

A – p, B – q, C – s, D – r

C

A – r, B – s, C – p, D – q

D

A – s, B – r, C – q, D – p

Answer

A – r, B – s, C – p, D – q

Explanation

Solution

(1) Pa s = [ML1T2][T]=[ML1T1]\lbrack ML^{- 1}T^{- 2}\rbrack\lbrack T\rbrack = \lbrack ML^{- 1}T^{- 1}\rbrack A – r

(2) NmK1=[MLT2][L][K]=[ML2T2K1]NmK^{- 1} = \frac{\lbrack MLT^{- 2}\rbrack\lbrack L\rbrack}{\lbrack K\rbrack} = \lbrack ML^{2}T^{- 2}K^{- 1}\rbrack B – s

(3) Jkg1K1=[ML2T2][M][K]=[M0L2T2K1]Jkg^{- 1}K^{- 1} = \frac{\lbrack ML^{2}T^{- 2}\rbrack}{\lbrack M\rbrack\lbrack K\rbrack} = \lbrack M^{0}L^{2}T^{- 2}K^{- 1}\rbrack C – p

(4) Wm1K1=[ML2T3][L][K]=[MLT3K1]Wm^{- 1}K^{- 1} = \frac{\lbrack ML^{2}T^{- 3}\rbrack}{\lbrack L\rbrack\lbrack K\rbrack} = \lbrack MLT^{- 3}K^{- 1}\rbrack D – q