Solveeit Logo

Question

Question: Match the column I with column II | | **Column I** ...

Match the column I with column II

Column IColumn II
(A)(p)T=2π m(k1+k2)k1k2\mathrm { T } = 2 \pi \sqrt { \frac { \mathrm {~m} \left( \mathrm { k } _ { 1 } + \mathrm { k } _ { 2 } \right) } { \mathrm { k } _ { 1 } \mathrm { k } _ { 2 } } }
(B)(q)T=2π2 mk\mathrm { T } = 2 \pi \sqrt { \frac { 2 \mathrm {~m} } { \mathrm { k } } }
(C)(r)T=2π m2k\mathrm { T } = 2 \pi \sqrt { \frac { \mathrm {~m} } { 2 \mathrm { k } } }
(D)(s)T=2π mk1+k2\mathrm { T } = 2 \pi \sqrt { \frac { \mathrm {~m} } { \mathrm { k } _ { 1 } + \mathrm { k } _ { 2 } } }
A

A-p, B-q, C-s, D-r

B

A-s, B-r, C-p, D-q

C

A-r, B-p, C-s, D-q

D

A-p, B-r, C-q, D-s

Answer

A-s, B-r, C-p, D-q

Explanation

Solution

In figure A, two springs are connected in parallel the effective spring constant is

T=2π mk1+k2\therefore \mathrm { T } = 2 \pi \sqrt { \frac { \mathrm {~m} } { \mathrm { k } _ { 1 } + \mathrm { k } _ { 2 } } }

A – s

In figure B two identical springs are connected in parallel. the effective spring constant is

B –r

In figure C, two springs are connected in series the effective spring’s constant is

Or

T=2π m(k1+k2)k1k2\therefore \mathrm { T } = 2 \pi \sqrt { \frac { \mathrm {~m} \left( \mathrm { k } _ { 1 } + \mathrm { k } _ { 2 } \right) } { \mathrm { k } _ { 1 } \mathrm { k } _ { 2 } } }

C – p

In figure D, two identical sprigs are connected in series the effective spring constant is

keff =(k)(k)k+k=k2\mathrm { k } _ { \text {eff } } = \frac { ( \mathrm { k } ) ( \mathrm { k } ) } { \mathrm { k } + \mathrm { k } } = \frac { \mathrm { k } } { 2 }

T=2π2 mk\therefore \mathrm { T } = 2 \pi \sqrt { \frac { 2 \mathrm {~m} } { \mathrm { k } } }

D – q