Solveeit Logo

Question

Physics Question on Gravitation

Match list-I with list-II:

List-IList-II
(A) Kinetic energy of planetGMma- \frac{GMm}{a}
(B) Gravitational Potential energy of Sun-planet systemGMm2a- \frac{GMm}{2a}
(C) Total mechanical energy of planetGMr\frac{GM}{r}
(D) Escape energy at the surface of planet for unit mass objectGMm2a- \frac{GMm}{2a}

(Where a = radius of planet orbit, r = radius of planet, M = mass of Sun, m = mass of planet) Choose the correct answer from the options given below:

A

(A) – II, (B) – I, (C) – IV, (D) – III

B

(A) – III, (B) – IV, (C) – I, (D) – II

C

(A) – I, (B) – IV, (C) – II, (D) – III

D

(A) – I, (B) – II, (C) – III, (D) – IV

Answer

(A) – II, (B) – I, (C) – IV, (D) – III

Explanation

Solution

The kinetic energy (KE) of a planet is given by:

KE=12mv2=GMm2a\text{KE} = \frac{1}{2} mv^2 = \frac{GMm}{2a}

The gravitational potential energy (PE) of the Sun-planet system is:

PE=GMma\text{PE} = -\frac{GMm}{a}

The total mechanical energy (TE) of the planet is:

TE=KE+PE=GMm2a\text{TE} = \text{KE} + \text{PE} = -\frac{GMm}{2a}

Escape energy at the surface of the planet for a unit mass object is given by:

Escape Energy=Gmr\text{Escape Energy} = \frac{Gm}{r}