Question
Mathematics Question on Derivatives
Match List-I with List-II:
List-I | List-II |
---|---|
The derivative of logex with respect to x1 at x=5 is | (I) -5 |
If x3+x2y+xy2−21x=0, then dxdy at (1,1) is | (II) -6 |
If f(x)=x3logex1, then f′(1)+f′′(1) is | (III) 5 |
If y=f(x2) and f′(x)=ex, then dxdy at x=0 is | (IV) 0 |
Choose the correct answer from the options given below :
(A)-(I), (B)-(III), (C)-(II), (D)-(IV)
(A)-(I), (B)-(III), (C)-(IV), (D)-(II)
(A)-(III), (B)-(IV), (C)-(I), (D)-(II)
(A)-(I), (B)-(II), (C)-(III), (D)-(IV)
(A)-(I), (B)-(III), (C)-(II), (D)-(IV)
Solution
The derivative of logx with respect to x is computed as:
dxdy=dudy⋅dxdu, where u=x1.
dxdy=x1⋅(−x−2)=−x21.
At x=5, dxdy=−251.
Match: (A) → (I).
Given x3+x2y+y2=21, differentiate implicitly:
3x2+2xy+x2dxdy+2ydxdy=0.
Rearrange:
(x2+2y)dxdy=21−3x2−2xy.
Substituting (x,y)=(1,1):
3dxdy=21−3−2=16⟹dxdy=316.
Match: (B) → (III).
Given f(x)=x3logex, simplify as f(x)=x3logx. Compute f′(x) using the product rule:
f′(x)=3x2logx+x3⋅x1=3x2logx+x2.
Compute f′′(x):
f′′(x)=6xlogx+3x2⋅x1+2x=6xlogx+5x.
At x=1, loge1=0:
f′(1)=1, f′′(1)=5⟹f′(1)+f′′(1)=1+5=6.
Match: (C) → (II).
Given y=f(x2) and f′(x)=x, use the chain rule:
dxdy=f′(x2)⋅dxd(x2)=f′(x2)⋅2x.
At x=0:
dxdy=f′(02)⋅2(0)=0.
Match: (D) → (IV).