Solveeit Logo

Question

Mathematics Question on Derivatives

Match List-I with List-II:

List-IList-II
The derivative of logex\log_e x with respect to 1x\frac{1}{x} at x=5x = 5 is(I) -5
If x3+x2y+xy221x=0x^3 + x^2y + xy^2 - 21x = 0, then dydx\frac{dy}{dx} at (1,1)(1, 1) is(II) -6
If f(x)=x3loge1xf(x) = x^3 \log_e \frac{1}{x}, then f(1)+f(1)f'(1) + f''(1) is(III) 5
If y=f(x2)y = f(x^2) and f(x)=exf'(x) = e^{\sqrt{x}}, then dydx\frac{dy}{dx} at x=0x = 0 is(IV) 0

Choose the correct answer from the options given below :

A

(A)-(I), (B)-(III), (C)-(II), (D)-(IV)

B

(A)-(I), (B)-(III), (C)-(IV), (D)-(II)

C

(A)-(III), (B)-(IV), (C)-(I), (D)-(II)

D

(A)-(I), (B)-(II), (C)-(III), (D)-(IV)

Answer

(A)-(I), (B)-(III), (C)-(II), (D)-(IV)

Explanation

Solution

The derivative of logx\log x with respect to xx is computed as:
dydx=dydududx\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}, where u=1xu = \frac{1}{x}.
dydx=1x(x2)=1x2\frac{dy}{dx} = \frac{1}{x} \cdot (-x^{-2}) = -\frac{1}{x^2}.
At x=5x=5, dydx=125\frac{dy}{dx} = -\frac{1}{25}.
Match: (A) \to (I).
Given x3+x2y+y2=21x^3 + x^2y + y^2 = 21, differentiate implicitly:
3x2+2xy+x2dydx+2ydydx=03x^2 + 2xy + x^2 \frac{dy}{dx} + 2y \frac{dy}{dx} = 0.
Rearrange:
(x2+2y)dydx=213x22xy(x^2 + 2y) \frac{dy}{dx} = 21 - 3x^2 - 2xy.
Substituting (x,y)=(1,1)(x, y) = (1, 1):
3dydx=2132=16    dydx=1633 \frac{dy}{dx} = 21 - 3 - 2 = 16 \implies \frac{dy}{dx} = \frac{16}{3}.
Match: (B) \to (III).
Given f(x)=x3logexf(x) = x^3 \log_e x, simplify as f(x)=x3logxf(x) = x^3 \log x. Compute f(x)f'(x) using the product rule:
f(x)=3x2logx+x31x=3x2logx+x2f'(x) = 3x^2 \log x + x^3 \cdot \frac{1}{x} = 3x^2 \log x + x^2.
Compute f(x)f''(x):
f(x)=6xlogx+3x21x+2x=6xlogx+5xf''(x) = 6x \log x + 3x^2 \cdot \frac{1}{x} + 2x = 6x \log x + 5x.
At x=1x = 1, loge1=0\log_e 1 = 0:
f(1)=1f'(1) = 1, f(1)=5    f(1)+f(1)=1+5=6f''(1) = 5 \implies f'(1) + f''(1) = 1 + 5 = 6.
Match: (C) \to (II).
Given y=f(x2)y = f(x^2) and f(x)=xf'(x) = \sqrt{x}, use the chain rule:
dydx=f(x2)ddx(x2)=f(x2)2x\frac{dy}{dx} = f'(x^2) \cdot \frac{d}{dx}(x^2) = f'(x^2) \cdot 2x.
At x=0x = 0:
dydx=f(02)2(0)=0\frac{dy}{dx} = f'(0^2) \cdot 2(0) = 0.
Match: (D) \to (IV).