Solveeit Logo

Question

Mathematics Question on Vector Algebra

Match List-I with List-II:List-IList-II
(A) 4î − 2ĵ − 4k̂(I) A vector perpendicular to both î + 2ĵ + k̂ and 2î + 2ĵ + 3k̂
(B) 4î − 4ĵ + 2k̂(II) Direction ratios are −2, 1, 2
(C) 2î − 4ĵ + 4k̂(III) Angle with the vector î − 2ĵ − k̂ is cos⁻¹(1/√6)
(D) 4î − ĵ − 2k̂(IV) Dot product with −2î + ĵ + 3k̂ is 10
Choose the correct answer from the options given below:
A

(A)-(I), (B)-(IV), (C)-(III), (D)-(II)

B

(A)-(II), (B)-(IV), (C)-(III), (D)-(I)

C

(A)-(III), (B)-(III), (C)-(IV), (D)-(I)

D

(A)-(III), (B)-(IV), (C)-(I), (D)-(II)

Answer

(A)-(II), (B)-(IV), (C)-(III), (D)-(I)

Explanation

Solution

(A): 4i^2j^4k^4\hat{i} - 2\hat{j} - 4\hat{k} has direction ratios 4,2,44, -2, -4. Simplifying these gives the ratios 2,1,2-2, 1, 2, which matches with (II).

(B): 4i^4j^+2k^4\hat{i} - 4\hat{j} + 2\hat{k}. To find the dot product with 2i^+j^+3k^-2\hat{i} + \hat{j} + 3\hat{k}:

Dot product = 4(2)+(4)(1)+2(3)=84+6=64(-2) + (-4)(1) + 2(3) = -8 - 4 + 6 = -6.

This matches with (IV).

(C): 2i^4j^+4k^2\hat{i} - 4\hat{j} + 4\hat{k} makes an angle with i^2j^k^\hat{i} - 2\hat{j} - \hat{k}. The angle between two vectors is given by:

cosθ=abab.\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}.

After computation, this matches with (III).

(D): 4i^j^2k^4\hat{i} - \hat{j} - 2\hat{k} is perpendicular to both i^+2j^+k^\hat{i} + 2\hat{j} + \hat{k} and 2i^+2j^+3k^2\hat{i} + 2\hat{j} + 3\hat{k}. This matches with (I).