Solveeit Logo

Question

Mathematics Question on Derivatives

Match List-I with List-II:List-I (Function)List-II (Derivative w.r.t. x)
(A) 5xln5\frac{5^x}{\ln 5}(I) 5x(ln5)25^x (\ln 5)^2
(B) ln5\ln 5(II) 5xln55^x \ln 5
(C) 5xln55^x \ln 5(III) 5x5^x
(D) 5x5^x(IV) 0

Choose the correct answer from the options given below.

A

(A) - (I), (B) - (II), (C) - (III), (D) - (IV)

B

(A) - (III), (B) - (IV), (C) - (II), (D) - (I)

C

(A) - (I), (B) - (IV), (C) - (II), (D) - (III)

D

(A) - (III), (B) - (II), (C) - (IV), (D) - (I)

Answer

(A) - (III), (B) - (II), (C) - (IV), (D) - (I)

Explanation

Solution

To match the functions in List-I with their derivatives in List-II , calculate the derivatives:

For (A) f(x)=5xloge5f(x) = \frac{5^x}{\log_e 5}:

f(x)=5x.f'(x) = 5^x.

Thus, (A) matches with (III).

For (B) f(x)=loge5f(x) = \log_e 5:

f(x)=0.f'(x) = 0.

Thus, (B) matches with (IV).

For (C) f(x)=5xloge5f(x) = 5^x \log_e 5:

f(x)=5xloge5.f'(x) = 5^x \log_e 5.

Thus, (C) matches with (II).

For (D) f(x)=5xf(x) = 5^x:

f(x)=5x(loge5)2.f'(x) = 5^x (\log_e 5)^2.

Thus, (D) matches with (I).

Final Matching: (A) - (III), (B) - (IV), (C) - (II), (D) - (I)