Solveeit Logo

Question

Physics Question on Thermodynamics

Match List I with List II Choose the correct answer from the options given below :

A

A-I, B-III, C-II, D-IV

B

A-IV, B-III, C-II, D-I

C

A-III, B-I, C-II, D-IV

D

A-IV, B-II, C-III, D-I

Answer

A-IV, B-III, C-II, D-I

Explanation

Solution

The equations and dimensional analysis are as follows:

The torque (τ\tau) is given by: τ=r×F    [τ]=[ML2T2]\tau = \mathbf{r} \times \mathbf{F} \implies [\tau] = [ML^2T^{-2}]

The magnetic field (B\mathbf{B}) is derived as: F=[qv×B]    [B]=[F][q][v]=MLT2ATL1=[MA1T2]\mathbf{F} = [q \mathbf{v} \times \mathbf{B}] \implies [\mathbf{B}] = \frac{[\mathbf{F}]}{[q][\mathbf{v}]} = \frac{MLT^{-2}}{ATL^{-1}} = [MA^{-1}T^{-2}]

The magnetic moment (M\mathbf{M}) has the dimensions: [M]=[I×A]=[AL2][\mathbf{M}] = [\mathbf{I} \times \mathbf{A}] = [AL^2]

Using Biot-Savart's Law: B=μ0Idlsinθr2B = \frac{\mu_0 I dl \sin \theta}{r^2}

The permeability of free space (μ\mu) is derived as: μ=Br2Idl    μ=MT2A1×L2AL=[MLT2A2]\mu = \frac{B r^2}{I dl} \implies \mu = \frac{MT^{-2}A^{-1} \times L^2}{AL} = [MLT^{-2}A^{-2}]

Thus, the correct matching is:

  • Torque [ML2T2]\to [ML^2T^{-2}]
  • Magnetic field [MA1T2]\to [MA^{-1}T^{-2}]
  • Magnetic moment [AL2]\to [AL^2]
  • Permeability of free space [MLT2A2]\to [MLT^{-2}A^{-2}]