Solveeit Logo

Question

Mathematics Question on Functions

Match List-I with List-II.
\begin{array}{|c|c|} \hline \textbf{List-I (Function)} & \textbf{List-II (Interval in which function is increasing)} \\\ \hline \frac{x}{\log_e x} & (-\infty, -2) \cup (2, \infty) \\\ \hline \frac{x}{2} + \frac{2}{x}, x \neq 0 & \left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \\\ \hline x^x, x > 0 & \left(\frac{1}{e}, \infty\right) \\\ \hline \sin x - \cos x & (e, \infty) \\\ \hline \end{array}
Choose the correct answer from the options given below:

A

(A-II), (B-I), (C-III), (D-IV)

B

(A-I), (B-III), (C-IV), (D-II)

C

(A-IV), (B-I), (C-III), (D-II)

D

(A-III), (B-IV), (C-I), (D-II)

Answer

(A-IV), (B-I), (C-III), (D-II)

Explanation

Solution

(A) The function xlogex\frac{x}{\log_e x} is increasing for x>ex > e (interval (IV)).

(B) The function x2+1x2\frac{x^2 + 1}{x - 2} is increasing in the intervals (,2)(2,)(-\infty, -2) \cup (2, \infty) (interval (I)).

(C) The exponential function exe^x is increasing for x>0x > 0, and the interval where the function is increasing for exe^x is (1e,)\left( \frac{1}{e}, \infty \right) (interval (III)).

(D) The function sinxcosx\sin x - \cos x is increasing in the interval (π4,π4)\left( -\frac{\pi}{4}, \frac{\pi}{4} \right) (interval (II)).