Solveeit Logo

Question

Question: Match each entry in **List-I** to the correct entries in **List-II** (where C is the constant of int...

Match each entry in List-I to the correct entries in List-II (where C is the constant of integration).

List-IList-II
I1x2+a2dx\int \frac{1}{x^2+a^2} dxA$\ln
II1a2x2dx\int \frac{1}{\sqrt{a^2-x^2}} dxB1atan1(xa)+C\frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right)+C
III1x2a2dx\int \frac{1}{\sqrt{x^2-a^2}} dxC$\ln
IV1x2+a2dx\int \frac{1}{\sqrt{x^2+a^2}} dxDsin1(xa)+C\sin^{-1}\left(\frac{x}{a}\right)+C
Answer

I-B, II-D, III-A, IV-C

Explanation

Solution

  1. The integral 1x2+a2dx\int \frac{1}{x^2+a^2} dx is a standard form which evaluates to 1atan1(xa)+C\frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right)+C. This matches List-II B.

  2. The integral 1a2x2dx\int \frac{1}{\sqrt{a^2-x^2}} dx is a standard form which evaluates to sin1(xa)+C\sin^{-1}\left(\frac{x}{a}\right)+C. This matches List-II D.

  3. The integral 1x2a2dx\int \frac{1}{\sqrt{x^2-a^2}} dx is a standard form which evaluates to lnx+x2a2+C\ln|x+\sqrt{x^2-a^2}|+C. This matches List-II A.

  4. The integral 1x2+a2dx\int \frac{1}{\sqrt{x^2+a^2}} dx is a standard form which evaluates to lnx+x2+a2+C\ln|x+\sqrt{x^2+a^2}|+C. This matches List-II C.