Solveeit Logo

Question

Question: Masses \(\text{8, 2, 4, 2 }kg\ \)are placed at the corners \(A,\ B,\ C,\ D\) respectively of a squar...

Masses 8, 2, 4, 2 kg \text{8, 2, 4, 2 }kg\ are placed at the corners A, B, C, DA,\ B,\ C,\ D respectively of a square ABCDABCD of diagonal80cm80cm. The distance of centre of mass from AA will be

A

20cm20cm

B

30cm30cm

C

40cm40cm

D

60cm60cm

Answer

30cm30cm

Explanation

Solution

Let corner A of square ABCD is at the origin and the mass 8 kg is placed at this corner (given in problem) Diagonal of square d=a2=80cmd = a\sqrt{2} = 80cma=402cma = 40\sqrt{2}cm

m1=8 kgm _ { 1 } = 8 \mathrm {~kg} m2=2kg,m_{2} = 2kg, m3=4kg,m_{3} = 4kg, m4=2kgm_{4} = 2kg

Let r1,r2,r3,r4{\overset{\rightarrow}{r}}_{1},{\overset{\rightarrow}{r}}_{2},{\overset{\rightarrow}{r}}_{3},{\overset{\rightarrow}{r}}_{4} are the position vectors of respective masses

r1=0i^+0j^{\overset{\rightarrow}{r}}_{1} = 0\widehat{i} + 0\widehat{j}, r2=ai^+0j^\overset{\rightarrow}{r_{2}} = a\widehat{i} + 0\widehat{j}, r3=ai^+aj^\overset{\rightarrow}{r_{3}} = a\widehat{i} + a\widehat{j}, r4=0i^+aj^\overset{\rightarrow}{r_{4}} = 0\widehat{i} + a\widehat{j}

From the formula of centre of mass

r=m1r1+m2r2+m3r3+m4r4m1+m2+m3+m4=152i+152j^\overset{\rightarrow}{r} = \frac{m_{1}\overset{\rightarrow}{r_{1}} + m_{2}\overset{\rightarrow}{r_{2}} + m_{3}\overset{\rightarrow}{r_{3}} + m_{4}\overset{\rightarrow}{r_{4}}}{m_{1} + m_{2} + m_{3} + m_{4}} = 15\sqrt{2}i + 15\sqrt{2}\widehat{j}

\therefore co-ordinates of centre of mass =(152,152)= (15\sqrt{2},15\sqrt{2}) and co-ordination of the corner =[0,0]= \lbrack 0,0\rbrack

From the formula of distance between two points (x1,y1)(x_{1},y_{1}) and (x2,y2)(x_{2},y_{2})

distance =(x2x1)2+(y2y1)2= \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}

= (1520)2+(1520)2\sqrt{(15\sqrt{2} - 0)^{2} + (15\sqrt{2} - 0)^{2}} =900\sqrt{900} = 30cm30cm