Solveeit Logo

Question

Physics Question on Resistance

Masses of three wires of copper are in the ratio of 1:3:51 : 3 : 5 and their lengths are in the ratio of 5:3:15 : 3 : 1. The ratio of their electrical resistances is

A

1 : 3 : 5

B

5 : 3 : 1

C

1 : 15 : 125

D

125 : 15 : 1

Answer

125 : 15 : 1

Explanation

Solution

Given, m1:m2:m3=1:3:5m_{1}: m_{2}: m_{3}=1: 3: 5
and l1:l2:l3=5:3:1 l_{1}: l_{2}: l_{3}=5: 3: 1
We know that, electrical resistance,
R=ρ1AR=\rho \frac{1}{A}
and d=mV=mAld=\frac{m}{V}=\frac{m}{A l}
or A=mdlA=\frac{m}{d l}
Aml\Rightarrow A \propto \frac{m}{l}
(\because density is same for the three wires)
R1:R2:R3=I1A1:I2A2:I3A3\therefore R_{1}: R_{2}: R_{3}=\frac{I_{1}}{A_{1}}: \frac{I_{2}}{A_{2}}: \frac{I_{3}}{A_{3}}
or R1:R2:R3=l12m1:l22m2:l32m3R_{1}: R_{2}: R_{3} =\frac{l_{1}^{2}}{m_{1}}: \frac{l_{2}^{2}}{m_{2}}: \frac{l_{3}^{2}}{m_{3}}
=251:93:15=\frac{25}{1}: \frac{9}{3}: \frac{1}{5}
R1:R2:R3=125:15:1\Rightarrow R_{1}: R_{2}: R_{3} =125: 15: 1