Solveeit Logo

Question

Question: Mass M is distributed uniformly over a rod of length L. Find the gravitational field at P at a dista...

Mass M is distributed uniformly over a rod of length L. Find the gravitational field at P at a distance a on perpendicular bisector.

A

B

C

D

None of these

Answer

Explanation

Solution

dm =

dE = dEcosθ=GMaL1/21/2dx(x2+a2)3/2\int \mathrm { dE } \cos \theta = \frac { \mathrm { GMa } } { \mathrm { L } } \int _ { - 1 / 2 } ^ { 1 / 2 } \frac { \mathrm { dx } } { \left( \mathrm { x } ^ { 2 } + \mathrm { a } ^ { 2 } \right) ^ { 3 / 2 } }Put x = a tan θ then dx = a sec2 θ dθ

E =

= GMLasinθ=GMxLax2+a21/21/2\frac { \mathrm { GM } } { \mathrm { La } } \sin \theta = \left. \frac { \mathrm { GMx } } { \mathrm { La } \sqrt { \mathrm { x } ^ { 2 } + \mathrm { a } ^ { 2 } } } \right| _ { - 1 / 2 } ^ { 1 / 2 }.

=