Solveeit Logo

Question

Question: Magnets A and B are geometrically similar but the magnetic moment of A is twice that of B. If T<sub>...

Magnets A and B are geometrically similar but the magnetic moment of A is twice that of B. If T1 and T2 be the time periods of the oscillation when their like poles and unlike poles are kept together respectively, then T1T2\frac { T _ { 1 } } { T _ { 2 } }will be

A

13\frac { 1 } { 3 }

B

12\frac { 1 } { 2 }

C

13\frac { 1 } { \sqrt { 3 } }

D

3\sqrt { 3 }

Answer

13\frac { 1 } { \sqrt { 3 } }

Explanation

Solution

TSum=2π(I1+I2)(M1+M2)BHT _ { S u m } = 2 \pi \sqrt { \frac { \left( I _ { 1 } + I _ { 2 } \right) } { \left( M _ { 1 } + M _ { 2 } \right) B _ { H } } }

Tdiff =2πI1+I2(M1M2)BHT _ { \text {diff } } = 2 \pi \sqrt { \frac { I _ { 1 } + I _ { 2 } } { \left( M _ { 1 } - M _ { 2 } \right) B _ { H } } }

TsTd=T1T2=M1M2M1+M2=2MM2M+M=13\Rightarrow \frac { T _ { s } } { T _ { d } } = \frac { T _ { 1 } } { T _ { 2 } } = \sqrt { \frac { M _ { 1 } - M _ { 2 } } { M _ { 1 } + M _ { 2 } } } = \sqrt { \frac { 2 M - M } { 2 M + M } } = \frac { 1 } { \sqrt { 3 } }