Solveeit Logo

Question

Question: Magnetic field in a space is given as $\overrightarrow{B} = -\frac{B_0x}{R}\hat{k}$. A circular ring...

Magnetic field in a space is given as B=B0xRk^\overrightarrow{B} = -\frac{B_0x}{R}\hat{k}. A circular ring of radius RR having current ii lies in the space with centre at origin as shown in the figure. Find the magnitude of net magnetic force acting on the circular ring due to the magnetic field.

A

2iB0R2iB_0R

B

πiB0R\pi iB_0R

C

2πiB0R2\pi iB_0R

D

Zero

Answer

πiB0R\pi iB_0R

Explanation

Solution

The magnetic field is

B=B0xRk^.\vec{B}=-\frac{B_0x}{R}\hat{k}.

A point on the loop has coordinates

r=Rcosθi^+Rsinθj^,\vec{r}=R\cos\theta\,\hat{i}+R\sin\theta\,\hat{j},

so along the loop, x=Rcosθx=R\cos\theta and therefore

B=B0cosθk^.\vec{B}=-B_0\cos\theta\,\hat{k}.

The differential length element on the circular ring is

dl=(Rsinθi^+Rcosθj^)dθ.d\vec{l}=(-R\sin\theta\,\hat{i}+R\cos\theta\,\hat{j})\,d\theta.

The force on a current element dld\vec{l} is given by

dF=idl×B.d\vec{F} = i\,d\vec{l}\times\vec{B}.

Substitute dld\vec{l} and B\vec{B}:

dF=i(Rsinθi^+Rcosθj^)dθ×(B0cosθk^).d\vec{F}= i\,(-R\sin\theta\,\hat{i}+R\cos\theta\,\hat{j})\,d\theta\times(-B_0\cos\theta\,\hat{k}).

Factor out the constants:

dF=iRB0cosθdθ[(sinθi^+cosθj^)×k^].d\vec{F}= iR\,B_0\cos\theta\,d\theta\, \big[(-\sin\theta\,\hat{i}+ \cos\theta\,\hat{j})\times \hat{k}\big].

Recall the cross products:

i^×k^=j^,j^×k^=i^.\hat{i}\times\hat{k} = -\hat{j},\qquad \hat{j}\times\hat{k} = \hat{i}.

Thus,

(sinθi^+cosθj^)×k^=sinθ(i^×k^)+cosθ(j^×k^)=sinθ  (j^)+cosθ  i^=sinθj^+cosθi^.(-\sin\theta\,\hat{i}+ \cos\theta\,\hat{j})\times\hat{k} = -\sin\theta\,(\hat{i}\times\hat{k})+\cos\theta\,(\hat{j}\times\hat{k}) = -\sin\theta\;(-\hat{j})+\cos\theta\;\hat{i} = \sin\theta\,\hat{j}+\cos\theta\,\hat{i}.

Then,

dF=iRB0cosθ(cosθi^+sinθj^)dθ.d\vec{F}= iR\,B_0\cos\theta\,(\cos\theta\,\hat{i}+\sin\theta\,\hat{j})\,d\theta.

So,

dF=iRB0cos2θi^dθ+iRB0cosθsinθj^dθ.d\vec{F}= iR\,B_0\cos^2\theta\,\hat{i}\,d\theta + iR\,B_0\cos\theta\sin\theta\,\hat{j}\,d\theta.

The net force on the ring is the integral over θ\theta from 0 to 2π2\pi:

F=iRB0[i^02πcos2θdθ+j^02πcosθsinθdθ].\vec{F}= iR\,B_0 \left[\hat{i}\int_0^{2\pi}\cos^2\theta\,d\theta + \hat{j}\int_0^{2\pi}\cos\theta\sin\theta\,d\theta\right].

We have:

02πcos2θdθ=π,02πcosθsinθdθ=0.\int_0^{2\pi}\cos^2\theta\,d\theta=\pi,\quad \int_0^{2\pi}\cos\theta\sin\theta\,d\theta=0.

Thus,

F=iRB0πi^.\vec{F}= iR\,B_0\pi\,\hat{i}.

However, note that while writing the cross product we had factored out a negative sign correctly. Rechecking the sign carefully:

  • Initially, B=B0cosθk^\vec{B}=-B_0\cos\theta\,\hat{k} and dld\vec{l} remain the same.
  • The correct cross product yields:
dF=idl×B=iRB0cosθ(cosθi^+sinθj^)dθ.d\vec{F}= i\,d\vec{l}\times\vec{B} = -iR\,B_0\cos\theta\,(\cos\theta\,\hat{i}+\sin\theta\,\hat{j})d\theta.

Integrating gives,

F=iRB0[i^02πcos2θdθ+j^02πcosθsinθdθ]=πiRB0i^.\vec{F}=-iR\,B_0\left[\hat{i}\int_0^{2\pi}\cos^2\theta\,d\theta+\hat{j}\int_0^{2\pi}\cos\theta\sin\theta\,d\theta\right] = -\pi\,iR\,B_0\,\hat{i}.

The negative sign indicates the force is in the i^-\hat{i} direction. Since the question asks for the magnitude,

F=πiB0R.F = \pi\, i\,B_0\,R.