Solveeit Logo

Question

Question: Magnet field at the center (at nucleus) of the hydrogen-like atoms (atomic number \( = {\text{Z}}\) ...

Magnet field at the center (at nucleus) of the hydrogen-like atoms (atomic number =Z = {\text{Z}} ) due to the motion of electron in nth{{\text{n}}^{{\text{th}}}} orbit is proportional to
A. n3z5\dfrac{{{{\text{n}}^3}}}{{{{\text{z}}^5}}}
B. n4z\dfrac{{{{\text{n}}^4}}}{{\text{z}}}
C. z2n3\dfrac{{{{\text{z}}^2}}}{{{{\text{n}}^3}}}
D. z3n5\dfrac{{{{\text{z}}^3}}}{{{{\text{n}}^5}}}

Explanation

Solution

In this question analyse angular momentum equation. Solve force equation that is F = mean{\text{F = }}{{\text{m}}_{\text{e}}}{{\text{a}}_{\text{n}}} and the equation given by the coulomb law equation. After that write the current equation with the amount of charge flowing in given time and then magnetic field equation to get the answer.

Complete step by step answer:
Angular momentum equation of the given
meωnrn2=nh2π.......(i){{\text{m}}_{\text{e}}}{\omega _{\text{n}}}{{\text{r}}_{\text{n}}}^{\text{2}} = \dfrac{{{\text{nh}}}}{{2\pi }}\,\,\,.......(i)
Force equation:
F = mean=Kqe2rn2{\text{F}}\,{\text{ = }}\,{{\text{m}}_{\text{e}}}{{\text{a}}_{\text{n}}}\, = \,\dfrac{{{\text{K}}{{\text{q}}_{\text{e}}}^2}}{{{{\text{r}}_{\text{n}}}^{\text{2}}}}
an=Kqe2mern2=ωn2rn\Rightarrow {{\text{a}}_{\text{n}}}\, = \,\dfrac{{{\text{K}}{{\text{q}}_{\text{e}}}^2}}{{{{\text{m}}_{\text{e}}}{{\text{r}}_{\text{n}}}^{\text{2}}}}\, = \,{\omega _{\text{n}}}^2{{\text{r}}_{\text{n}}}

Now put K = 14πε0{\text{K}}\,{\text{ = }}\,\dfrac{1}{{{\text{4}}\pi {\varepsilon _0}}} in above equation
ωn2rn=qe24πε0mern2......(ii){\omega _{\text{n}}}^2{{\text{r}}_{\text{n}}}\, = \,\dfrac{{{{\text{q}}_{\text{e}}}^2}}{{{\text{4}}\pi {\varepsilon _0}{{\text{m}}_{\text{e}}}{{\text{r}}_{\text{n}}}^{\text{2}}}}\,\,\,\,\,......(ii)
Solving (i)(i) and (ii)(ii) we get:
ωn=meqe4π2n3h3ε02{\omega _{\text{n}}}\, = \,\dfrac{{{{\text{m}}_{\text{e}}}{{\text{q}}_{\text{e}}}^4\pi }}{{2{{\text{n}}^3}{{\text{h}}^3}{\varepsilon _0}^2}}
and rn=n2h2ε0qe2meπ{{\text{r}}_{\text{n}}}\, = \,\dfrac{{{{\text{n}}^2}{{\text{h}}^2}{\varepsilon _0}}}{{{{\text{q}}_{\text{e}}}^2{{\text{m}}_{\text{e}}}\pi }}

Now write the relation of current, charge and time:
I = qeωn2π=meqe54n3h3ε02{\text{I}}\,{\text{ = }}\,{{\text{q}}_{\text{e}}}\dfrac{{{\omega _{\text{n}}}}}{{2\pi }}\, = \,\,\dfrac{{{{\text{m}}_{\text{e}}}{{\text{q}}_{\text{e}}}^5}}{{{\text{4}}{{\text{n}}^3}{{\text{h}}^3}{\varepsilon _0}^2}}
By writing the equation of magnetic field we get:
B = μ0I2rn{\text{B = }}{\mu _0}\dfrac{{\text{I}}}{{2{{\text{r}}_{\text{n}}}}}
B = μ0me2qe7π8n5h5ε03.....(iii)\therefore {\text{B = }}\dfrac{{{\mu _0}{{\text{m}}_{\text{e}}}^2{{\text{q}}_{\text{e}}}^7\pi }}{{{\text{8}}{{\text{n}}^5}{{\text{h}}^5}{\varepsilon _0}^3}}\,\,\,\,.....(iii)

Hence, the correct option is D.

Note: Motion of electrons around the hydrogen atom produces a magnetic field at the center of the atom. Due to the continuous movement of the charges magnetic field is generated which we can calculate as above. This magnetic field value depends on the electron’s orbital number.