Solveeit Logo

Question

Question: Magnesium hydroxide is the white milky substance in milk of magnesia. What mass of \({\text{Mg}}{\le...

Magnesium hydroxide is the white milky substance in milk of magnesia. What mass of Mg(OH)2{\text{Mg}}{\left( {{\text{OH}}} \right)_{\text{2}}} is formed when 15 mL15{\text{ mL}} of 0.2 MNaOH0.2{\text{ M}} - {\text{NaOH}} is combined with 12 mL12{\text{ mL}} of 0.15 MMgCl20.15{\text{ M}} - {\text{MgC}}{{\text{l}}_2}?
A. 0.087 g0.087{\text{ g}}
B. 0.079 g0.079{\text{ g}}
C. 0.1044 g0.1044{\text{ g}}
D. 0.522 g0.522{\text{ g}}

Explanation

Solution

First write the balanced chemical equation for the reaction of NaOH{\text{NaOH}} with MgCl2{\text{MgC}}{{\text{l}}_2}. Then calculate the number of moles of both NaOH{\text{NaOH}} and MgCl2{\text{MgC}}{{\text{l}}_2} and find the limiting reagent. From the limiting reagent calculate the number of moles and thus, the mass of magnesium hydroxide.

Complete answer:
First we have to write the balanced chemical equation for the reaction of NaOH{\text{NaOH}} with MgCl2{\text{MgC}}{{\text{l}}_2}.
When NaOH{\text{NaOH}} reacts with MgCl2{\text{MgC}}{{\text{l}}_2}, magnesium hydroxide and sodium chloride are formed. The balanced chemical equation is as follows:
2NaOH+MgCl2Mg(OH)2+NaCl{\text{2NaOH}} + {\text{MgC}}{{\text{l}}_2} \to {\text{Mg}}{\left( {{\text{OH}}} \right)_2} + {\text{NaCl}}
Calculate the number of moles of NaOH{\text{NaOH}} in 15 mL15{\text{ mL}} of 0.2 MNaOH0.2{\text{ M}} - {\text{NaOH}} as follows:
Number of moles of NaOH{\text{NaOH}} =0.2×151000 = \dfrac{{0.2 \times 15}}{{1000}}
Number of moles of NaOH{\text{NaOH}} =0.003 mol = 0.003{\text{ mol}}
Thus, the number of moles of NaOH{\text{NaOH}} in 15 mL15{\text{ mL}} of 0.2 MNaOH0.2{\text{ M}} - {\text{NaOH}} are 0.003 mol0.003{\text{ mol}}.
Calculate the number of moles of MgCl2{\text{MgC}}{{\text{l}}_2} in 12 mL12{\text{ mL}} of 0.15 MMgCl20.15{\text{ M}} - {\text{MgC}}{{\text{l}}_2} as follows:
Number of moles of MgCl2{\text{MgC}}{{\text{l}}_2} = 0.15×121000\dfrac{{0.15 \times 12}}{{1000}}
Number of moles of MgCl2{\text{MgC}}{{\text{l}}_2} = 0.0018 mol0.0018{\text{ mol}}
Thus, the number of moles of MgCl2{\text{MgC}}{{\text{l}}_2} in 12 mL12{\text{ mL}} of 0.15 MMgCl20.15{\text{ M}} - {\text{MgC}}{{\text{l}}_2} are 0.0018 mol0.0018{\text{ mol}}.
From the balanced chemical equation, we can see that one mole of MgCl2{\text{MgC}}{{\text{l}}_2} we require two moles of NaOH{\text{NaOH}}. Thus, now we will calculate the number of moles of NaOH{\text{NaOH}} required for 0.0018 mol0.0018{\text{ mol}} of MgCl2{\text{MgC}}{{\text{l}}_2}. Thus,
1 mol MgCl2=2 mol NaOH1{\text{ mol MgC}}{{\text{l}}_2} = {\text{2 mol NaOH}}
Thus,
Number of moles of NaOH{\text{NaOH}} required for 0.0018 mol0.0018{\text{ mol}} of MgCl2{\text{MgC}}{{\text{l}}_2} =0.0018 mol MgCl2×2 mol NaOH1 mol MgCl2 = \dfrac{{0.0018{\text{ mol MgC}}{{\text{l}}_2} \times 2{\text{ mol NaOH}}}}{{1{\text{ mol MgC}}{{\text{l}}_2}}}
Number of moles of NaOH{\text{NaOH}} required for 0.0018 mol0.0018{\text{ mol}} of MgCl2{\text{MgC}}{{\text{l}}_2} =0.0036 mol NaOH = 0.0036{\text{ mol NaOH}}
Thus, the number of moles of NaOH{\text{NaOH}} required for 0.0018 mol0.0018{\text{ mol}} of MgCl2{\text{MgC}}{{\text{l}}_2} are 0.0036 mol0.0036{\text{ mol}}.
But we have only 0.003 mol0.003{\text{ mol}} of NaOH{\text{NaOH}}. Thus, NaOH{\text{NaOH}} is the limiting reagent.
Now calculate the number of moles of Mg(OH)2{\text{Mg}}{\left( {{\text{OH}}} \right)_{\text{2}}} formed using the number of moles of NaOH{\text{NaOH}}.
From the reaction stoichiometry, we can see that,
1 mol Mg(OH)2=2 mol NaOH1{\text{ mol Mg}}{\left( {{\text{OH}}} \right)_{\text{2}}} = {\text{2 mol NaOH}}
Thus,
Number of moles of Mg(OH)2{\text{Mg}}{\left( {{\text{OH}}} \right)_{\text{2}}} =0.003 mol NaOH×1 mol Mg(OH)22 mol NaOH = \dfrac{{0.003{\text{ mol NaOH}} \times {\text{1 mol Mg}}{{\left( {{\text{OH}}} \right)}_2}}}{{2{\text{ mol NaOH}}}}
Number of moles of Mg(OH)2{\text{Mg}}{\left( {{\text{OH}}} \right)_{\text{2}}} =0.0015 mol Mg(OH)2 = 0.0015{\text{ mol Mg}}{\left( {{\text{OH}}} \right)_2}
Thus, the number of moles of Mg(OH)2{\text{Mg}}{\left( {{\text{OH}}} \right)_{\text{2}}} formed are 0.0015 mol0.0015{\text{ mol}}.

Now calculate the mass of Mg(OH)2{\text{Mg}}{\left( {{\text{OH}}} \right)_{\text{2}}} in 0.0015 mol0.0015{\text{ mol}} of Mg(OH)2{\text{Mg}}{\left( {{\text{OH}}} \right)_{\text{2}}} as follows:
We know that,
Number of moles(mol)=Mass(g)Molar mass(g/mol){\text{Number of moles}}\left( {{\text{mol}}} \right) = \dfrac{{{\text{Mass}}\left( {\text{g}} \right)}}{{{\text{Molar mass}}\left( {{\text{g/mol}}} \right)}}
Thus,
Mass(g)=Number of moles(mol)×Molar mass(g/mol){\text{Mass}}\left( {\text{g}} \right) = {\text{Number of moles}}\left( {{\text{mol}}} \right) \times {\text{Molar mass}}\left( {{\text{g/mol}}} \right)
Substitute 0.0015 mol0.0015{\text{ mol}} for the number of moles of Mg(OH)2{\text{Mg}}{\left( {{\text{OH}}} \right)_{\text{2}}} and 58.31 g/mol58.31{\text{ g/mol}} for the molar mass of Mg(OH)2{\text{Mg}}{\left( {{\text{OH}}} \right)_{\text{2}}}. Thus,
Mass of Mg(OH)2=0.0015 mol×58.31 g/mol{\text{Mass of Mg}}{\left( {{\text{OH}}} \right)_2} = 0.0015{\text{ mol}} \times 58.31{\text{ g/mol}}
Mass of Mg(OH)2=0.087 g{\text{Mass of Mg}}{\left( {{\text{OH}}} \right)_2} = 0.087{\text{ g}}
Thus, the mass of Mg(OH)2{\text{Mg}}{\left( {{\text{OH}}} \right)_{\text{2}}} formed is 0.087 g0.087{\text{ g}}.

**Thus, the correct option is (A) 0.087 g0.087{\text{ g}}.

Note:**
While solving the problem, remember to write the correct balanced chemical equation for the reaction. A reagent that is completely used up in the reaction is known as the limiting reagent. The limiting reagent determines when the reaction stops. The amount of product formed in the reaction is limited by the limiting reagent.