Solveeit Logo

Question

Question: \(M_{x}\) and \(M_{y}\) denote the atomic masses of the parent and the daughter atom respectively in...

MxM_{x} and MyM_{y} denote the atomic masses of the parent and the daughter atom respectively in a radioactive decay the Q – value for a β\beta decay is Q1Q_{1} and that for a β+\beta^{+} decay is Q2Q_{2} if mem_{e} denotes the mass of an electron, then which of the following statements is correct?

A

Q1=(MxMy)C2Q_{1} = \left( M_{x} - M_{y} \right)C^{2}andQ2=(MxMy2me)c2Q_{2} = \left( M_{x} - M_{y} - 2m_{e} \right)c^{2}

B

Q1=(Mx=My)c2Q_{1} = \left( M_{x} = M_{y} \right)c^{2} and Q2=(MxMy)c2Q_{2} = \left( M_{x} - M_{y} \right)c^{2}

C

Q1=(MxMy2me)c2Q_{1} = \left( M_{x} - M_{y} - 2m_{e} \right)c^{2}and Q2=(MxMy+2me)c2Q_{2} = \left( M_{x} - M_{y} + 2m_{e} \right)c^{2}

D

Q1=(MxMy+2me)c2Q_{1} = \left( M_{x} - M_{y} + 2m_{e} \right)c^{2}and Q2=(MxMy+2me)c2Q_{2} = \left( M_{x} - M_{y} + 2m_{e} \right)c^{2}

Answer

Q1=(MxMy)C2Q_{1} = \left( M_{x} - M_{y} \right)C^{2}andQ2=(MxMy2me)c2Q_{2} = \left( M_{x} - M_{y} - 2m_{e} \right)c^{2}

Explanation

Solution

: β\beta^{-}decay is represented as

ZXAZ+1YA+1e0+υˉ+Q1ZX^{A} \rightarrow_{Z + 1}Y^{A} +_{- 1}e^{0} + \bar{\upsilon} + Q_{1}

Q1=[mN(ZXA)mN(Z+1YA)me]c2\therefore Q_{1} = \left\lbrack m_{N}(_{Z}X^{A}) - m_{N}(_{Z + 1}Y^{A}) - m_{e} \right\rbrack c^{2}

=[mN(ZXA)+ZmemN(Z+1YA)(Z+1)me]c2= \left\lbrack m_{N}(_{Z}X^{A}) + Zm_{e} - m_{N}(_{Z + 1}Y^{A}) - (Z + 1)m_{e} \right\rbrack c^{2}

=[m(ZXA)m(Z+1YA)]c2=(MxMy)c2= \lbrack m(_{Z}X^{A}) - m(_{Z + 1}Y^{A})\rbrack c^{2} = (M_{x} - M_{y})c^{2}

β+\beta^{+}decay is represented as

ZXAZ1YA+1e0+υ+Q2Q2=[mN(ZXA)mN(Z1YA)me]c2ZX^{A} \rightarrow_{Z - 1}Y^{A} +_{1}e^{0} + \upsilon + Q_{2}\therefore Q_{2} = \left\lbrack m_{N}(_{Z}X^{A}) - m_{N}(_{Z - 1}Y^{A}) - m_{e} \right\rbrack c^{2}

=[mN(ZXA)+ZmemN(Z1YA)(Z1)me2me]c2= \left\lbrack m_{N}(_{Z}X^{A}) + Zm_{e} - m_{N}(_{Z - 1}Y^{A}) - (Z - 1)m_{e} - 2m_{e} \right\rbrack c^{2}

=[m(ZXA)m(Z1YA)2me]c2=(MxMy2me)c2= \lbrack m(_{Z}X^{A}) - m(_{Z - 1}Y^{A}) - 2m_{e}\rbrack c^{2} = (M_{x} - M_{y} - 2m_{e})c^{2}