Solveeit Logo

Question

Physics Question on Nuclei

MxM_x and MyM_y denote the atomic masses of the parent and the daughter atom respectively in a radioactive decay. The QQ-value for a β\beta^- decay is Q1Q_1 and that for a β+\beta^+ decay is Q2Q_2 . If mem_e denotes the mass of an electron, then which of the following statements is correct?

A

Q1=(MxMy)c2Q_{1} = \left(M_{x}-M_{y}\right)c^{2} and Q2=(MxMy2me)c2Q_{2} = \left(M_{x} -M_{y} -2m_{e}\right)c^{2}

B

Q1=(MxMy)c2Q_{1} = \left(M_{x}-M_{y}\right)c^{2} and Q2=(MxMy)c2Q_{2} = \left(M_{x} -M_{y} \right)c^{2}

C

Q1=(MxMy2me)c2Q_{1} = \left(M_{x}-M_{y} -2m_{e}\right)c^{2} and Q2=(MxMy+2me)c2Q_{2} = \left(M_{x} -M_{y} + 2m_{e}\right)c^{2}

D

Q1=(MxMy+2me)c2Q_{1} = \left(M_{x}-M_{y} +2m_{e}\right)c^{2} and Q2=(Mx+My+2me)c2Q_{2} = \left(M_{x} +M_{y} + 2m_{e}\right)c^{2}

Answer

Q1=(MxMy)c2Q_{1} = \left(M_{x}-M_{y}\right)c^{2} and Q2=(MxMy2me)c2Q_{2} = \left(M_{x} -M_{y} -2m_{e}\right)c^{2}

Explanation

Solution

β\beta^- decay is represented as zXAz+1YA+1e0+υˉ+Q1_{z}X^{A} \rightarrow _{z+1}Y^{A} +_{-1}e^{0} + \bar{\upsilon} +Q_{1} Q1=[mN(ZXA)mN(Z+1YA)me]c2\therefore Q_{1} = \left[m_{N}\left(_{Z}X^{A}\right)-m_{N}\left(_{Z+1}Y^{A}\right) -m_{e}\right]c^{2} =[mN(ZXA)+ZmemN(Z+1YA)(Z+1)me]c2= \left[m_{N} \left(_{Z}X^{A}\right) + Zm_{e} -m_{N}\left(_{Z+1}Y^{A}\right)-\left(Z+1\right)m_{e}\right]c^{2} =[m(ZXA)m(Z+1YA)]c2= \left[m \left(_{Z}X^{A}\right) -m\left(_{Z+1}Y^{A}\right)\right] c^{2} =(MxMy)c2 = \left(M_{x} - M_{y}\right)c^{2} β+\beta^+ decay is represented as ZXA=Z1YA+1e0+υ+Q2_{Z}X^{A} = _{Z-1}Y^{A} +_{1}e^{0}+\upsilon +Q_{2} Q2=[mN(ZXA)mN(Z1YA)me]c2\therefore Q_{2} = \left[m_{N}\left(_{Z}X^{A}\right) -m_{N}\left(_{Z-1}Y^{A}\right)-m_{e}\right]c^{2} =[mN(ZXA)+ZmemN(Z1YA)(Z1)me2me]c2 = \left[m_{N}\left(_{Z}X^{A}\right) +Zm_{e}-m_{N}\left(_{Z-1}Y^{A}\right)-\left(Z-1\right)m_{e}-2m_{e}\right]c^{2} =[m(ZXA)m(Z1YA)2me]c2=\left[m\left(_{Z}X^{A}\right) -m\left(_{Z-1}Y^{A}\right) -2m_{e}\right]c^{2} =(MxMy2me)c2=\left(M_{x}-M_{y}-2m_{e}\right)c^{2}