Solveeit Logo

Question

Question: m men and n women are to be seated in a row so that no two women sit together. If m\>n, then number ...

m men and n women are to be seated in a row so that no two women sit together. If m>n, then number of ways is which they can be seated is

A

B

C

(m+n+1)!(mn)!\frac { ( \mathrm { m } + \mathrm { n } + 1 ) ! } { ( \mathrm { m } - \mathrm { n } ) ! }

D

m!(m+1)!(mn+1)!\frac { \mathrm { m } ! ( \mathrm { m } + 1 ) ! } { ( \mathrm { m } - \mathrm { n } + 1 ) ! }

Answer

m!(m+1)!(mn+1)!\frac { \mathrm { m } ! ( \mathrm { m } + 1 ) ! } { ( \mathrm { m } - \mathrm { n } + 1 ) ! }

Explanation

Solution

Required ways = m ! (m + = m!(m+1)!(mn+1)!\frac { \mathrm { m } ! ( \mathrm { m } + 1 ) ! } { ( \mathrm { m } - \mathrm { n } + 1 ) ! }