Solveeit Logo

Question

Question: \((m + 2)\sin\theta + (2m - 1)\cos\theta = 2m + 1,\) i...

(m+2)sinθ+(2m1)cosθ=2m+1,(m + 2)\sin\theta + (2m - 1)\cos\theta = 2m + 1, i

A

tanθ=34\tan\theta = \frac{3}{4}

B

tanθ=43\tan\theta = \frac{4}{3}

C

tanθ=2mm2+1\tan\theta = \frac{2m}{m^{2} + 1}

D

None of these

Answer

tanθ=43\tan\theta = \frac{4}{3}

Explanation

Solution

Squaring the given relation and putting tanθ=t,\tan\theta = t,

(m+2)2t2+2(m+2)(2m1)t+(2m1)2=(2m+1)2(1+t2)(m + 2)^{2}t^{2} + 2(m + 2)(2m - 1)t + (2m - 1)^{2} = (2m + 1)^{2}(1 + t^{2})

3(1m2)t2+(4m2+6m4)t8m=0\Rightarrow 3(1 - m^{2})t^{2} + (4m^{2} + 6m - 4)t - 8m = 0

(3t4)[(1m2)t+2m]=0\Rightarrow (3t - 4)\lbrack(1 - m^{2})t + 2m\rbrack = 0,

which is true if t=tanθ=43t = \tan\theta = \frac{4}{3} or tanθ=2mm21\tan\theta = \frac{2m}{m^{2} - 1}.