Solveeit Logo

Question

Question: M = 10 kg, R = 10 cm. What is ω when the string is unwounded by 1 m ...

M = 10 kg, R = 10 cm. What is ω when the string is unwounded by 1 m

A

20√2

B

40√2

C

60√2

D

80√2

Answer

20√2 rad/s

Explanation

Solution

Here's how to solve this problem:

  1. Given:

    • Mass, M=10kgM = 10 \, \text{kg}
    • Radius, R=10cm=0.1mR = 10 \, \text{cm} = 0.1 \, \text{m}
    • Force, F=20NF = 20 \, \text{N}
    • String unwound, s=1ms = 1 \, \text{m}
  2. Determine the moment of inertia II of the disk:

    I=12MR2=12×10×(0.1)2=0.05kgm2I = \frac{1}{2} M R^2 = \frac{1}{2} \times 10 \times (0.1)^2 = 0.05 \, \text{kg} \cdot \text{m}^2
  3. Relate linear displacement and angular displacement:

    s=Rθθ=sR=10.1=10rads = R\theta \quad \Rightarrow \quad \theta = \frac{s}{R} = \frac{1}{0.1} = 10 \, \text{rad}
  4. Calculate angular acceleration α\alpha:

    • Torque, τ=FR=20×0.1=2Nm\tau = F R = 20 \times 0.1 = 2 \, \text{N}\cdot \text{m}
    • Then, α=τI=20.05=40rad/s2\alpha = \frac{\tau}{I} = \frac{2}{0.05} = 40 \, \text{rad/s}^2
  5. Use rotational kinematics (starting from rest):

    ω2=ω02+2αθwith ω0=0\omega^2 = \omega_0^2 + 2\alpha\theta \quad \text{with } \omega_0=0 ω2=2×40×10=800ω=800=202rad/s\omega^2 = 2 \times 40 \times 10 = 800 \quad \Rightarrow \quad \omega = \sqrt{800} = 20\sqrt{2} \, \text{rad/s}