Solveeit Logo

Question

Question: l<sub>1</sub> and \(l_{2}\)are the side lengths of two variable squares S<sub>1</sub> and S<sub>2</s...

l1 and l2l_{2}are the side lengths of two variable squares S1 and S2 respectively. If l1 = l2l_{2} + l23{l_{2}}^{3} +6 then rate of change of the area of S2 with respect to rate of change of the area of S1 when l2l_{2}=1 is equal to

A

¾

B

4/3

C

3/2

D

1/32

Answer

1/32

Explanation

Solution

Let ∆1, and 2 be area of squares S1 and S2 then

1 = 12\ell _ { 1 } ^ { 2 }, A2 = 22\ell _ { 2 } ^ { 2 }

dΔ1d1\frac { d \Delta _ { 1 } } { d \ell _ { 1 } } = 2l1, dΔ2d2\frac { d \Delta _ { 2 } } { d \ell _ { 2 } } = 2l2

= dΔ2dΔ1=21d2d1=21(1+32)\frac { d \Delta _ { 2 } } { d \Delta _ { 1 } } = \frac { \ell _ { 2 } } { \ell _ { 1 } } \cdot \frac { d \ell _ { 2 } } { d \ell _ { 1 } } = \frac { \ell _ { 2 } } { \ell _ { 1 } \left( 1 + 3 \ell _ { 2 } \right) }

When l2 = 1, l1 = 8