Solveeit Logo

Question

Question: Let $f(x) = \frac{2x-3}{2025-(2\alpha^2-3\alpha)x}$. If $f(x)$ is Bijective in the following definit...

Let f(x)=2x32025(2α23α)xf(x) = \frac{2x-3}{2025-(2\alpha^2-3\alpha)x}. If f(x)f(x) is Bijective in the following definitions then find α\alpha?

  1. f:R{20252α23α}R{2}f: R-\{\frac{2025}{2\alpha^2-3\alpha}\} \rightarrow R-\{2\}

  2. f:RRf: R \rightarrow R

Answer

For definition 1, α{1,12}\alpha \in \{1, \frac{1}{2}\}. For definition 2, α{0,32}\alpha \in \{0, \frac{3}{2}\}.

Explanation

Solution

A rational function of the form f(x)=ax+bcx+df(x) = \frac{ax+b}{cx+d} is bijective if adbc0ad-bc \neq 0. If c0c \neq 0, the domain is R{dc}\mathbb{R} - \{-\frac{d}{c}\} and the range is R{ac}\mathbb{R} - \{\frac{a}{c}\}.

Let K=2α23αK = 2\alpha^2-3\alpha. Then f(x)=2x32025Kxf(x) = \frac{2x-3}{2025-Kx}. Here a=2a=2, b=3b=-3, c=Kc=-K, d=2025d=2025. The injectivity condition is adbc=(2)(2025)(3)(K)=40503K0ad-bc = (2)(2025) - (-3)(-K) = 4050 - 3K \neq 0.

Case 1: f:R{20252α23α}R{2}f: R-\{\frac{2025}{2\alpha^2-3\alpha}\} \rightarrow R-\{2\} For the domain to be R{2025K}R-\{\frac{2025}{K}\}, we must have K0K \neq 0. The range of a rational function is R{ac}\mathbb{R} - \{\frac{a}{c}\}. In this case, the range is R{2K}\mathbb{R} - \{\frac{2}{-K}\}. For the function to be surjective onto R{2}R-\{2\}, the range must be R{2}R-\{2\}. Therefore, 2K=2\frac{2}{-K} = 2, which implies 2=2K-2 = 2K, so K=1K = -1. Substituting K=2α23αK = 2\alpha^2-3\alpha: 2α23α=12\alpha^2-3\alpha = -1 2α23α+1=02\alpha^2-3\alpha+1 = 0 Factoring gives (2α1)(α1)=0(2\alpha-1)(\alpha-1) = 0. So, α=1\alpha = 1 or α=12\alpha = \frac{1}{2}. For these values, K=10K=-1 \neq 0, which is consistent with the domain definition. The injectivity condition 40503K=40503(1)=405304050 - 3K = 4050 - 3(-1) = 4053 \neq 0 is satisfied. Thus, for definition 1, α{1,12}\alpha \in \{1, \frac{1}{2}\}.

Case 2: f:RRf: R \rightarrow R For the domain to be RR, the denominator 2025Kx2025-Kx must never be zero for any xRx \in \mathbb{R}. This occurs if and only if the coefficient of xx is zero, i.e., K=0K=0. 2α23α=02\alpha^2-3\alpha = 0 Factoring gives α(2α3)=0\alpha(2\alpha-3) = 0. So, α=0\alpha = 0 or α=32\alpha = \frac{3}{2}. If K=0K=0, the function becomes f(x)=2x32025f(x) = \frac{2x-3}{2025}, which is a linear function with a non-zero slope. Linear functions with non-zero slopes are bijective from RR to RR. Thus, for definition 2, α{0,32}\alpha \in \{0, \frac{3}{2}\}.