Solveeit Logo

Question

Question: \(\log(x\sin x - \cos x) + c\)...

log(xsinxcosx)+c\log(x\sin x - \cos x) + c

A

log(sinxxcosx)+c\log(\sin x - x\cos x) + c

B

sin2x1+sin2xdx=\int_{}^{}{\frac{\sin 2x}{1 + \sin^{2}x}dx =}

C

logsin2x+c{logsin}2x + c

D

log(1+sin2x)+c\log(1 + \sin^{2}x) + c

Answer

sin2x1+sin2xdx=\int_{}^{}{\frac{\sin 2x}{1 + \sin^{2}x}dx =}

Explanation

Solution

excosec2(2ex+5)6mudx=\int_{}^{}{e^{- x}\text{cose}\text{c}^{2}(2e^{- x} + 5)}\mspace{6mu} dx =

12cot(2ex+5)+c\frac{1}{2}\cot(2e^{- x} + 5) + c

Put 12cot(2ex+5)+c- \frac{1}{2}\cot(2e^{- x} + 5) + c

then it reduced to 2cot(2ex+5)+c2\cot(2e^{- x} + 5) + c.

Trick : By inspection,

2cot(2ex+5)+c- 2\cot(2e^{- x} + 5) + c

sin3x6mu.6mucosx6mudx=\int_{}^{}{\sin^{3}x\mspace{6mu}.\mspace{6mu}\cos x\mspace{6mu} dx =}.