Solveeit Logo

Question

Question: \({logtan}\theta - \frac{1}{2}\tan^{2}\theta + c\)...

logtanθ12tan2θ+c{logtan}\theta - \frac{1}{2}\tan^{2}\theta + c

A

logtanθ+12tan2θ+c{logtan}\theta + \frac{1}{2}\tan^{2}\theta + c

B

1cos1x.1x2dx=\int_{}^{}{\frac{1}{\cos^{- 1}x.\sqrt{1 - x^{2}}}dx =}

C

log(cos1x)+c\log(\cos^{- 1}x) + c

D

None of these

Answer

logtanθ+12tan2θ+c{logtan}\theta + \frac{1}{2}\tan^{2}\theta + c

Explanation

Solution

f(x)6mudxlogsinx=loglogsinx\int_{}^{}{\frac{f(x)\mspace{6mu} dx}{{logsin}x} = {loglogsin}x}

Put f(x)=f(x) = then it reduces to

sinx\sin x

Now again, put cosx\cos x then its reduced form is

2tdt=du- 2 t d t = d u logsinx{logsin}x