Solveeit Logo

Question

Question: \(\log(\sec^{2}x) + c\)...

log(sec2x)+c\log(\sec^{2}x) + c

A

log(1+tanx)+c\log(1 + \tan x) + c

B

1(1+tanx)2+c- \frac{1}{(1 + \tan x)^{2}} + c

C

e2x1e2x+16mudx=\int_{}^{}\frac{e^{2x} - 1}{e^{2x} + 1}\mspace{6mu} dx =

D

e2x1e2x+1+c\frac{e^{2x} - 1}{e^{2x} + 1} + c

Answer

log(1+tanx)+c\log(1 + \tan x) + c

Explanation

Solution

a=π4,6mub=3a = \frac{\pi}{4},\mspace{6mu} b = 3

Put a=π4,6mub=3a = - \frac{\pi}{4},\mspace{6mu} b = 3 then it reduces to

a=π4,6mub=a = \frac{\pi}{4},\mspace{6mu} b =.