Solveeit Logo

Question

Question: \[{logcot}\left( \frac{x}{2} + \frac{\pi}{6} \right) + c\]...

logcot(x2+π6)+c{logcot}\left( \frac{x}{2} + \frac{\pi}{6} \right) + c

A

12logcot(x2+π6)+c\frac{1}{2}{logcot}\left( \frac{x}{2} + \frac{\pi}{6} \right) + c

B

x2+x6(x2)(x1)dx=\int_{}^{}{\frac{x^{2} + x - 6}{(x - 2)(x - 1)}dx =}

C

x+2log(x1)+cx + 2\log(x - 1) + c

D

2x+2log(x1)+c2x + 2\log(x - 1) + c

Answer

12logcot(x2+π6)+c\frac{1}{2}{logcot}\left( \frac{x}{2} + \frac{\pi}{6} \right) + c

Explanation

Solution

sinx23sin3x+15sin5x+c\sin x - \frac{2}{3}\sin^{3}x + \frac{1}{5}\sin^{5}x + c

sinx+23sin3x+15sin5x+c\sin x + \frac{2}{3}\sin^{3}x + \frac{1}{5}\sin^{5}x + c.