Solveeit Logo

Question

Question: Logarithm of \(32\sqrt[5]{4}\)to the base \(2\sqrt{2}\)is...

Logarithm of 324532\sqrt[5]{4}to the base 222\sqrt{2}is

A

3.6

B

5

C

5.6

D

None of these

Answer

3.6

Explanation

Solution

Let x be the required logarithm , then by definition

(22)x=3245(2.21/2)x=25.22/5\mathbf{(2}\sqrt{\mathbf{2}}\mathbf{)}^{\mathbf{x}}\mathbf{= 32}\sqrt[\mathbf{5}]{\mathbf{4}}\mathbf{(2.}\mathbf{2}^{\mathbf{1/2}}\mathbf{)}^{\mathbf{x}}\mathbf{=}\mathbf{2}^{\mathbf{5}}\mathbf{.}\mathbf{2}^{\mathbf{2/5}}; ∴ 23x2=25+25\mathbf{2}^{\frac{\mathbf{3x}}{\mathbf{2}}}\mathbf{=}\mathbf{2}^{\mathbf{5 +}\frac{\mathbf{2}}{\mathbf{5}}}

Here, by equating the indices, 32x=275\frac{3}{2}x = \frac{27}{5} , x=185=3.6\therefore x = \frac{18}{5} = 3.6