Solveeit Logo

Question

Question: $\log_x (125x) \cdot \log_{25}^{2} x = 1$ $\log_x 5^3x \cdot \log_{5^2}^{2} x = 1$ $\log_x 5^3x = \f...

logx(125x)log252x=1\log_x (125x) \cdot \log_{25}^{2} x = 1 logx53xlog522x=1\log_x 5^3x \cdot \log_{5^2}^{2} x = 1 logx53x=1log522x\log_x 5^3x = \frac{1}{\log_{5^2}^{2} x} logx53x=logx252\log_x 5^3x = \log_{x}^{2} 5^2 53x=5^3x =

Answer

x=5,1625x=5, \frac{1}{625}

Explanation

Solution

Solution:

The given equation is logx(125x)log252x=1\log_x (125x) \cdot \log_{25}^{2} x = 1.

First, we determine the domain for which the logarithms are defined. For logx(125x)\log_x (125x), we must have the base x>0x > 0 and x1x \neq 1, and the argument 125x>0125x > 0. Since 125>0125 > 0, x>0x > 0. For log25x\log_{25} x, we must have the base 25>025 > 0 and 25125 \neq 1 (which are true), and the argument x>0x > 0. Combining these conditions, the domain is x>0x > 0 and x1x \neq 1.

Now, we simplify the terms using logarithm properties, preferably converting to a common base, such as base 5. logx(125x)=log5(125x)log5x=log5(53x)log5x=log553+log5xlog5x=3+log5xlog5x\log_x (125x) = \frac{\log_5 (125x)}{\log_5 x} = \frac{\log_5 (5^3 \cdot x)}{\log_5 x} = \frac{\log_5 5^3 + \log_5 x}{\log_5 x} = \frac{3 + \log_5 x}{\log_5 x}. log25x=log5xlog525=log5xlog552=log5x2\log_{25} x = \frac{\log_5 x}{\log_5 25} = \frac{\log_5 x}{\log_5 5^2} = \frac{\log_5 x}{2}.

Substitute these expressions back into the original equation: (3+log5xlog5x)(log5x2)2=1\left(\frac{3 + \log_5 x}{\log_5 x}\right) \cdot \left(\frac{\log_5 x}{2}\right)^2 = 1.

Let y=log5xy = \log_5 x. Since x>0x > 0 and x1x \neq 1, yy can be any real number except log51=0\log_5 1 = 0. The equation becomes: (3+yy)(y2)2=1\left(\frac{3 + y}{y}\right) \cdot \left(\frac{y}{2}\right)^2 = 1. (3+yy)y24=1\left(\frac{3 + y}{y}\right) \cdot \frac{y^2}{4} = 1.

Since y0y \neq 0, we can simplify the term y2y\frac{y^2}{y}: (3+y)y4=1\frac{(3 + y) \cdot y}{4} = 1. Multiply both sides by 4: (3+y)y=4(3 + y) y = 4. 3y+y2=43y + y^2 = 4. Rearrange the terms to form a quadratic equation: y2+3y4=0y^2 + 3y - 4 = 0.

We can solve this quadratic equation by factoring. We look for two numbers that multiply to -4 and add up to 3. These numbers are 4 and -1. (y+4)(y1)=0(y + 4)(y - 1) = 0.

This gives two possible values for yy: y+4=0    y=4y + 4 = 0 \implies y = -4. y1=0    y=1y - 1 = 0 \implies y = 1.

Now, substitute back y=log5xy = \log_5 x to find the values of xx.

Case 1: y=4y = -4. log5x=4\log_5 x = -4. By the definition of logarithms, x=54x = 5^{-4}. x=154=1625x = \frac{1}{5^4} = \frac{1}{625}. This value of xx is positive and not equal to 1, so it is a valid solution.

Case 2: y=1y = 1. log5x=1\log_5 x = 1. By the definition of logarithms, x=51x = 5^1. x=5x = 5. This value of xx is positive and not equal to 1, so it is a valid solution.

The solutions to the equation are x=5x = 5 and x=1625x = \frac{1}{625}.