Solveeit Logo

Question

Question: Solve the logarithmic inequality $log_{\sqrt{8}}(x^2-4x+3)\leq 1$....

Solve the logarithmic inequality log8(x24x+3)1log_{\sqrt{8}}(x^2-4x+3)\leq 1.

A

[21+22,1)(3,2+1+22][2 - \sqrt{1 + 2\sqrt{2}}, 1) \cup (3, 2 + \sqrt{1 + 2\sqrt{2}}]

B

(,1)(3,)(-\infty, 1) \cup (3, \infty)

C

[21+22,2+1+22][2 - \sqrt{1 + 2\sqrt{2}}, 2 + \sqrt{1 + 2\sqrt{2}}]

D

(1,3)(1, 3)

Answer

[21+22,1)(3,2+1+22][2 - \sqrt{1 + 2\sqrt{2}}, 1) \cup (3, 2 + \sqrt{1 + 2\sqrt{2}}]

Explanation

Solution

To solve the logarithmic inequality log8(x24x+3)1log_{\sqrt{8}}(x^2-4x+3)\leq 1, we must satisfy two conditions:

  1. Domain of the logarithm: The argument of the logarithm must be positive. x24x+3>0x^2-4x+3 > 0 (x1)(x3)>0(x-1)(x-3) > 0 This inequality holds for x(,1)(3,)x \in (-\infty, 1) \cup (3, \infty).

  2. Solving the inequality: Since the base of the logarithm, 8\sqrt{8}, is greater than 1, we can remove the logarithm by raising the base to the power of the right side and maintaining the inequality direction. x24x+3(8)1x^2-4x+3 \leq (\sqrt{8})^1 x24x+38x^2-4x+3 \leq \sqrt{8} x24x+(322)0x^2-4x+(3-2\sqrt{2}) \leq 0

    To find the roots of the quadratic equation x24x+(322)=0x^2-4x+(3-2\sqrt{2}) = 0, we use the quadratic formula: x=4±(4)24(1)(322)2x = \frac{4 \pm \sqrt{(-4)^2 - 4(1)(3-2\sqrt{2})}}{2} x=4±1612+822x = \frac{4 \pm \sqrt{16 - 12 + 8\sqrt{2}}}{2} x=4±4+822x = \frac{4 \pm \sqrt{4 + 8\sqrt{2}}}{2} x=4±21+222x = \frac{4 \pm 2\sqrt{1 + 2\sqrt{2}}}{2} x=2±1+22x = 2 \pm \sqrt{1 + 2\sqrt{2}}

    Let α=21+22\alpha = 2 - \sqrt{1 + 2\sqrt{2}} and β=2+1+22\beta = 2 + \sqrt{1 + 2\sqrt{2}}. The inequality x24x+(322)0x^2-4x+(3-2\sqrt{2}) \leq 0 holds for x[α,β]x \in [\alpha, \beta].

  3. Intersection of conditions: We need to find the intersection of the domain (,1)(3,)(-\infty, 1) \cup (3, \infty) and the solution interval [21+22,2+1+22][2 - \sqrt{1 + 2\sqrt{2}}, 2 + \sqrt{1 + 2\sqrt{2}}]. We note that 21+22<12 - \sqrt{1 + 2\sqrt{2}} < 1 and 2+1+22>32 + \sqrt{1 + 2\sqrt{2}} > 3. Therefore, the intersection is [21+22,1)(3,2+1+22][2 - \sqrt{1 + 2\sqrt{2}}, 1) \cup (3, 2 + \sqrt{1 + 2\sqrt{2}}].